-
-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
task_pool.rs
920 lines (842 loc) · 34.2 KB
/
task_pool.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
use std::{
future::Future,
marker::PhantomData,
mem,
panic::AssertUnwindSafe,
sync::Arc,
thread::{self, JoinHandle},
};
use async_task::FallibleTask;
use concurrent_queue::ConcurrentQueue;
use futures_lite::{future, FutureExt};
use crate::{
thread_executor::{ThreadExecutor, ThreadExecutorTicker},
Task,
};
struct CallOnDrop(Option<Arc<dyn Fn() + Send + Sync + 'static>>);
impl Drop for CallOnDrop {
fn drop(&mut self) {
if let Some(call) = self.0.as_ref() {
call();
}
}
}
/// Used to create a [`TaskPool`]
#[derive(Default)]
#[must_use]
pub struct TaskPoolBuilder {
/// If set, we'll set up the thread pool to use at most `num_threads` threads.
/// Otherwise use the logical core count of the system
num_threads: Option<usize>,
/// If set, we'll use the given stack size rather than the system default
stack_size: Option<usize>,
/// Allows customizing the name of the threads - helpful for debugging. If set, threads will
/// be named <thread_name> (<thread_index>), i.e. "MyThreadPool (2)"
thread_name: Option<String>,
on_thread_spawn: Option<Arc<dyn Fn() + Send + Sync + 'static>>,
on_thread_destroy: Option<Arc<dyn Fn() + Send + Sync + 'static>>,
}
impl TaskPoolBuilder {
/// Creates a new [`TaskPoolBuilder`] instance
pub fn new() -> Self {
Self::default()
}
/// Override the number of threads created for the pool. If unset, we default to the number
/// of logical cores of the system
pub fn num_threads(mut self, num_threads: usize) -> Self {
self.num_threads = Some(num_threads);
self
}
/// Override the stack size of the threads created for the pool
pub fn stack_size(mut self, stack_size: usize) -> Self {
self.stack_size = Some(stack_size);
self
}
/// Override the name of the threads created for the pool. If set, threads will
/// be named `<thread_name> (<thread_index>)`, i.e. `MyThreadPool (2)`
pub fn thread_name(mut self, thread_name: String) -> Self {
self.thread_name = Some(thread_name);
self
}
/// Sets a callback that is invoked once for every created thread as it starts.
///
/// This is called on the thread itself and has access to all thread-local storage.
/// This will block running async tasks on the thread until the callback completes.
pub fn on_thread_spawn(mut self, f: impl Fn() + Send + Sync + 'static) -> Self {
self.on_thread_spawn = Some(Arc::new(f));
self
}
/// Sets a callback that is invoked once for every created thread as it terminates.
///
/// This is called on the thread itself and has access to all thread-local storage.
/// This will block thread termination until the callback completes.
pub fn on_thread_destroy(mut self, f: impl Fn() + Send + Sync + 'static) -> Self {
self.on_thread_destroy = Some(Arc::new(f));
self
}
/// Creates a new [`TaskPool`] based on the current options.
pub fn build(self) -> TaskPool {
TaskPool::new_internal(self)
}
}
/// A thread pool for executing tasks.
///
/// While futures usually need to be polled to be executed, Bevy tasks are being
/// automatically driven by the pool on threads owned by the pool. The [`Task`]
/// future only needs to be polled in order to receive the result. (For that
/// purpose, it is often stored in a component or resource, see the
/// `async_compute` example.)
///
/// If the result is not required, one may also use [`Task::detach`] and the pool
/// will still execute a task, even if it is dropped.
#[derive(Debug)]
pub struct TaskPool {
/// The executor for the pool
///
/// This has to be separate from TaskPoolInner because we have to create an `Arc<Executor>` to
/// pass into the worker threads, and we must create the worker threads before we can create
/// the `Vec<Task<T>>` contained within `TaskPoolInner`
executor: Arc<async_executor::Executor<'static>>,
/// Inner state of the pool
threads: Vec<JoinHandle<()>>,
shutdown_tx: async_channel::Sender<()>,
}
impl TaskPool {
thread_local! {
static LOCAL_EXECUTOR: async_executor::LocalExecutor<'static> = async_executor::LocalExecutor::new();
static THREAD_EXECUTOR: Arc<ThreadExecutor<'static>> = Arc::new(ThreadExecutor::new());
}
/// Each thread should only create one `ThreadExecutor`, otherwise, there are good chances they will deadlock
pub fn get_thread_executor() -> Arc<ThreadExecutor<'static>> {
Self::THREAD_EXECUTOR.with(|executor| executor.clone())
}
/// Create a `TaskPool` with the default configuration.
pub fn new() -> Self {
TaskPoolBuilder::new().build()
}
fn new_internal(builder: TaskPoolBuilder) -> Self {
let (shutdown_tx, shutdown_rx) = async_channel::unbounded::<()>();
let executor = Arc::new(async_executor::Executor::new());
let num_threads = builder
.num_threads
.unwrap_or_else(crate::available_parallelism);
let threads = (0..num_threads)
.map(|i| {
let ex = Arc::clone(&executor);
let shutdown_rx = shutdown_rx.clone();
let thread_name = if let Some(thread_name) = builder.thread_name.as_deref() {
format!("{thread_name} ({i})")
} else {
format!("TaskPool ({i})")
};
let mut thread_builder = thread::Builder::new().name(thread_name);
if let Some(stack_size) = builder.stack_size {
thread_builder = thread_builder.stack_size(stack_size);
}
let on_thread_spawn = builder.on_thread_spawn.clone();
let on_thread_destroy = builder.on_thread_destroy.clone();
thread_builder
.spawn(move || {
TaskPool::LOCAL_EXECUTOR.with(|local_executor| {
if let Some(on_thread_spawn) = on_thread_spawn {
on_thread_spawn();
drop(on_thread_spawn);
}
let _destructor = CallOnDrop(on_thread_destroy);
loop {
let res = std::panic::catch_unwind(|| {
let tick_forever = async move {
loop {
local_executor.tick().await;
}
};
future::block_on(ex.run(tick_forever.or(shutdown_rx.recv())))
});
if let Ok(value) = res {
// Use unwrap_err because we expect a Closed error
value.unwrap_err();
break;
}
}
});
})
.expect("Failed to spawn thread.")
})
.collect();
Self {
executor,
threads,
shutdown_tx,
}
}
/// Return the number of threads owned by the task pool
pub fn thread_num(&self) -> usize {
self.threads.len()
}
/// Allows spawning non-`'static` futures on the thread pool. The function takes a callback,
/// passing a scope object into it. The scope object provided to the callback can be used
/// to spawn tasks. This function will await the completion of all tasks before returning.
///
/// This is similar to `rayon::scope` and `crossbeam::scope`
///
/// # Example
///
/// ```
/// use bevy_tasks::TaskPool;
///
/// let pool = TaskPool::new();
/// let mut x = 0;
/// let results = pool.scope(|s| {
/// s.spawn(async {
/// // you can borrow the spawner inside a task and spawn tasks from within the task
/// s.spawn(async {
/// // borrow x and mutate it.
/// x = 2;
/// // return a value from the task
/// 1
/// });
/// // return some other value from the first task
/// 0
/// });
/// });
///
/// // The ordering of results is non-deterministic if you spawn from within tasks as above.
/// // If you're doing this, you'll have to write your code to not depend on the ordering.
/// assert!(results.contains(&0));
/// assert!(results.contains(&1));
///
/// // The ordering is deterministic if you only spawn directly from the closure function.
/// let results = pool.scope(|s| {
/// s.spawn(async { 0 });
/// s.spawn(async { 1 });
/// });
/// assert_eq!(&results[..], &[0, 1]);
///
/// // You can access x after scope runs, since it was only temporarily borrowed in the scope.
/// assert_eq!(x, 2);
/// ```
///
/// # Lifetimes
///
/// The [`Scope`] object takes two lifetimes: `'scope` and `'env`.
///
/// The `'scope` lifetime represents the lifetime of the scope. That is the time during
/// which the provided closure and tasks that are spawned into the scope are run.
///
/// The `'env` lifetime represents the lifetime of whatever is borrowed by the scope.
/// Thus this lifetime must outlive `'scope`.
///
/// ```compile_fail
/// use bevy_tasks::TaskPool;
/// fn scope_escapes_closure() {
/// let pool = TaskPool::new();
/// let foo = Box::new(42);
/// pool.scope(|scope| {
/// std::thread::spawn(move || {
/// // UB. This could spawn on the scope after `.scope` returns and the internal Scope is dropped.
/// scope.spawn(async move {
/// assert_eq!(*foo, 42);
/// });
/// });
/// });
/// }
/// ```
///
/// ```compile_fail
/// use bevy_tasks::TaskPool;
/// fn cannot_borrow_from_closure() {
/// let pool = TaskPool::new();
/// pool.scope(|scope| {
/// let x = 1;
/// let y = &x;
/// scope.spawn(async move {
/// assert_eq!(*y, 1);
/// });
/// });
/// }
pub fn scope<'env, F, T>(&self, f: F) -> Vec<T>
where
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
T: Send + 'static,
{
Self::THREAD_EXECUTOR.with(|scope_executor| {
self.scope_with_executor_inner(true, scope_executor, scope_executor, f)
})
}
/// This allows passing an external executor to spawn tasks on. When you pass an external executor
/// [`Scope::spawn_on_scope`] spawns is then run on the thread that [`ThreadExecutor`] is being ticked on.
/// If [`None`] is passed the scope will use a [`ThreadExecutor`] that is ticked on the current thread.
///
/// When `tick_task_pool_executor` is set to `true`, the multithreaded task stealing executor is ticked on the scope
/// thread. Disabling this can be useful when finishing the scope is latency sensitive. Pulling tasks from
/// global executor can run tasks unrelated to the scope and delay when the scope returns.
///
/// See [`Self::scope`] for more details in general about how scopes work.
pub fn scope_with_executor<'env, F, T>(
&self,
tick_task_pool_executor: bool,
external_executor: Option<&ThreadExecutor>,
f: F,
) -> Vec<T>
where
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
T: Send + 'static,
{
Self::THREAD_EXECUTOR.with(|scope_executor| {
// If a `external_executor` is passed use that. Otherwise get the executor stored
// in the `THREAD_EXECUTOR` thread local.
if let Some(external_executor) = external_executor {
self.scope_with_executor_inner(
tick_task_pool_executor,
external_executor,
scope_executor,
f,
)
} else {
self.scope_with_executor_inner(
tick_task_pool_executor,
scope_executor,
scope_executor,
f,
)
}
})
}
fn scope_with_executor_inner<'env, F, T>(
&self,
tick_task_pool_executor: bool,
external_executor: &ThreadExecutor,
scope_executor: &ThreadExecutor,
f: F,
) -> Vec<T>
where
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
T: Send + 'static,
{
// SAFETY: This safety comment applies to all references transmuted to 'env.
// Any futures spawned with these references need to return before this function completes.
// This is guaranteed because we drive all the futures spawned onto the Scope
// to completion in this function. However, rust has no way of knowing this so we
// transmute the lifetimes to 'env here to appease the compiler as it is unable to validate safety.
// Any usages of the references passed into `Scope` must be accessed through
// the transmuted reference for the rest of this function.
let executor: &async_executor::Executor = &self.executor;
let executor: &'env async_executor::Executor = unsafe { mem::transmute(executor) };
let external_executor: &'env ThreadExecutor<'env> =
unsafe { mem::transmute(external_executor) };
let scope_executor: &'env ThreadExecutor<'env> = unsafe { mem::transmute(scope_executor) };
let spawned: ConcurrentQueue<FallibleTask<T>> = ConcurrentQueue::unbounded();
// shadow the variable so that the owned value cannot be used for the rest of the function
let spawned: &'env ConcurrentQueue<
FallibleTask<Result<T, Box<(dyn std::any::Any + Send)>>>,
> = unsafe { mem::transmute(&spawned) };
let scope = Scope {
executor,
external_executor,
scope_executor,
spawned,
scope: PhantomData,
env: PhantomData,
};
// shadow the variable so that the owned value cannot be used for the rest of the function
let scope: &'env Scope<'_, 'env, T> = unsafe { mem::transmute(&scope) };
f(scope);
if spawned.is_empty() {
Vec::new()
} else {
future::block_on(async move {
let get_results = async {
let mut results = Vec::with_capacity(spawned.len());
while let Ok(task) = spawned.pop() {
if let Some(res) = task.await {
match res {
Ok(res) => results.push(res),
Err(payload) => std::panic::resume_unwind(payload),
}
} else {
panic!("Failed to catch panic!");
}
}
results
};
let tick_task_pool_executor = tick_task_pool_executor || self.threads.is_empty();
// we get this from a thread local so we should always be on the scope executors thread.
// note: it is possible `scope_executor` and `external_executor` is the same executor,
// in that case, we should only tick one of them, otherwise, it may cause deadlock.
let scope_ticker = scope_executor.ticker().unwrap();
let external_ticker = if !external_executor.is_same(scope_executor) {
external_executor.ticker()
} else {
None
};
match (external_ticker, tick_task_pool_executor) {
(Some(external_ticker), true) => {
Self::execute_global_external_scope(
executor,
external_ticker,
scope_ticker,
get_results,
)
.await
}
(Some(external_ticker), false) => {
Self::execute_external_scope(external_ticker, scope_ticker, get_results)
.await
}
// either external_executor is none or it is same as scope_executor
(None, true) => {
Self::execute_global_scope(executor, scope_ticker, get_results).await
}
(None, false) => Self::execute_scope(scope_ticker, get_results).await,
}
})
}
}
#[inline]
async fn execute_global_external_scope<'scope, 'ticker, T>(
executor: &'scope async_executor::Executor<'scope>,
external_ticker: ThreadExecutorTicker<'scope, 'ticker>,
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
// we restart the executors if a task errors. if a scoped
// task errors it will panic the scope on the call to get_results
let execute_forever = async move {
loop {
let tick_forever = async {
loop {
external_ticker.tick().or(scope_ticker.tick()).await;
}
};
// we don't care if it errors. If a scoped task errors it will propagate
// to get_results
let _result = AssertUnwindSafe(executor.run(tick_forever))
.catch_unwind()
.await
.is_ok();
}
};
execute_forever.or(get_results).await
}
#[inline]
async fn execute_external_scope<'scope, 'ticker, T>(
external_ticker: ThreadExecutorTicker<'scope, 'ticker>,
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
let execute_forever = async {
loop {
let tick_forever = async {
loop {
external_ticker.tick().or(scope_ticker.tick()).await;
}
};
let _result = AssertUnwindSafe(tick_forever).catch_unwind().await.is_ok();
}
};
execute_forever.or(get_results).await
}
#[inline]
async fn execute_global_scope<'scope, 'ticker, T>(
executor: &'scope async_executor::Executor<'scope>,
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
let execute_forever = async {
loop {
let tick_forever = async {
loop {
scope_ticker.tick().await;
}
};
let _result = AssertUnwindSafe(executor.run(tick_forever))
.catch_unwind()
.await
.is_ok();
}
};
execute_forever.or(get_results).await
}
#[inline]
async fn execute_scope<'scope, 'ticker, T>(
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
let execute_forever = async {
loop {
let tick_forever = async {
loop {
scope_ticker.tick().await;
}
};
let _result = AssertUnwindSafe(tick_forever).catch_unwind().await.is_ok();
}
};
execute_forever.or(get_results).await
}
/// Spawns a static future onto the thread pool. The returned [`Task`] is a
/// future that can be polled for the result. It can also be canceled and
/// "detached", allowing the task to continue running even if dropped. In
/// any case, the pool will execute the task even without polling by the
/// end-user.
///
/// If the provided future is non-`Send`, [`TaskPool::spawn_local`] should
/// be used instead.
pub fn spawn<T>(&self, future: impl Future<Output = T> + Send + 'static) -> Task<T>
where
T: Send + 'static,
{
Task::new(self.executor.spawn(future))
}
/// Spawns a static future on the thread-local async executor for the
/// current thread. The task will run entirely on the thread the task was
/// spawned on.
///
/// The returned [`Task`] is a future that can be polled for the
/// result. It can also be canceled and "detached", allowing the task to
/// continue running even if dropped. In any case, the pool will execute the
/// task even without polling by the end-user.
///
/// Users should generally prefer to use [`TaskPool::spawn`] instead,
/// unless the provided future is not `Send`.
pub fn spawn_local<T>(&self, future: impl Future<Output = T> + 'static) -> Task<T>
where
T: 'static,
{
Task::new(TaskPool::LOCAL_EXECUTOR.with(|executor| executor.spawn(future)))
}
/// Runs a function with the local executor. Typically used to tick
/// the local executor on the main thread as it needs to share time with
/// other things.
///
/// ```rust
/// use bevy_tasks::TaskPool;
///
/// TaskPool::new().with_local_executor(|local_executor| {
/// local_executor.try_tick();
/// });
/// ```
pub fn with_local_executor<F, R>(&self, f: F) -> R
where
F: FnOnce(&async_executor::LocalExecutor) -> R,
{
Self::LOCAL_EXECUTOR.with(f)
}
}
impl Default for TaskPool {
fn default() -> Self {
Self::new()
}
}
impl Drop for TaskPool {
fn drop(&mut self) {
self.shutdown_tx.close();
let panicking = thread::panicking();
for join_handle in self.threads.drain(..) {
let res = join_handle.join();
if !panicking {
res.expect("Task thread panicked while executing.");
}
}
}
}
/// A [`TaskPool`] scope for running one or more non-`'static` futures.
///
/// For more information, see [`TaskPool::scope`].
#[derive(Debug)]
pub struct Scope<'scope, 'env: 'scope, T> {
executor: &'scope async_executor::Executor<'scope>,
external_executor: &'scope ThreadExecutor<'scope>,
scope_executor: &'scope ThreadExecutor<'scope>,
spawned: &'scope ConcurrentQueue<FallibleTask<Result<T, Box<(dyn std::any::Any + Send)>>>>,
// make `Scope` invariant over 'scope and 'env
scope: PhantomData<&'scope mut &'scope ()>,
env: PhantomData<&'env mut &'env ()>,
}
impl<'scope, 'env, T: Send + 'scope> Scope<'scope, 'env, T> {
/// Spawns a scoped future onto the thread pool. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value.
///
/// For futures that should run on the thread `scope` is called on [`Scope::spawn_on_scope`] should be used
/// instead.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
let task = self
.executor
.spawn(AssertUnwindSafe(f).catch_unwind())
.fallible();
// ConcurrentQueue only errors when closed or full, but we never
// close and use an unbounded queue, so it is safe to unwrap
self.spawned.push(task).unwrap();
}
/// Spawns a scoped future onto the thread the scope is run on. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value. Users should generally prefer to use
/// [`Scope::spawn`] instead, unless the provided future needs to run on the scope's thread.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn_on_scope<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
let task = self
.scope_executor
.spawn(AssertUnwindSafe(f).catch_unwind())
.fallible();
// ConcurrentQueue only errors when closed or full, but we never
// close and use an unbounded queue, so it is safe to unwrap
self.spawned.push(task).unwrap();
}
/// Spawns a scoped future onto the thread of the external thread executor.
/// This is typically the main thread. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value. Users should generally prefer to use
/// [`Scope::spawn`] instead, unless the provided future needs to run on the external thread.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn_on_external<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
let task = self
.external_executor
.spawn(AssertUnwindSafe(f).catch_unwind())
.fallible();
// ConcurrentQueue only errors when closed or full, but we never
// close and use an unbounded queue, so it is safe to unwrap
self.spawned.push(task).unwrap();
}
}
impl<'scope, 'env, T> Drop for Scope<'scope, 'env, T>
where
T: 'scope,
{
fn drop(&mut self) {
future::block_on(async {
while let Ok(task) = self.spawned.pop() {
task.cancel().await;
}
});
}
}
#[cfg(test)]
#[allow(clippy::disallowed_types)]
mod tests {
use super::*;
use std::sync::{
atomic::{AtomicBool, AtomicI32, Ordering},
Barrier,
};
#[test]
fn test_spawn() {
let pool = TaskPool::new();
let foo = Box::new(42);
let foo = &*foo;
let count = Arc::new(AtomicI32::new(0));
let outputs = pool.scope(|scope| {
for _ in 0..100 {
let count_clone = count.clone();
scope.spawn(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
}
});
for output in &outputs {
assert_eq!(*output, 42);
}
assert_eq!(outputs.len(), 100);
assert_eq!(count.load(Ordering::Relaxed), 100);
}
#[test]
fn test_thread_callbacks() {
let counter = Arc::new(AtomicI32::new(0));
let start_counter = counter.clone();
{
let barrier = Arc::new(Barrier::new(11));
let last_barrier = barrier.clone();
// Build and immediately drop to terminate
let _pool = TaskPoolBuilder::new()
.num_threads(10)
.on_thread_spawn(move || {
start_counter.fetch_add(1, Ordering::Relaxed);
barrier.clone().wait();
})
.build();
last_barrier.wait();
assert_eq!(10, counter.load(Ordering::Relaxed));
}
assert_eq!(10, counter.load(Ordering::Relaxed));
let end_counter = counter.clone();
{
let _pool = TaskPoolBuilder::new()
.num_threads(20)
.on_thread_destroy(move || {
end_counter.fetch_sub(1, Ordering::Relaxed);
})
.build();
assert_eq!(10, counter.load(Ordering::Relaxed));
}
assert_eq!(-10, counter.load(Ordering::Relaxed));
let start_counter = counter.clone();
let end_counter = counter.clone();
{
let barrier = Arc::new(Barrier::new(6));
let last_barrier = barrier.clone();
let _pool = TaskPoolBuilder::new()
.num_threads(5)
.on_thread_spawn(move || {
start_counter.fetch_add(1, Ordering::Relaxed);
barrier.wait();
})
.on_thread_destroy(move || {
end_counter.fetch_sub(1, Ordering::Relaxed);
})
.build();
last_barrier.wait();
assert_eq!(-5, counter.load(Ordering::Relaxed));
}
assert_eq!(-10, counter.load(Ordering::Relaxed));
}
#[test]
fn test_mixed_spawn_on_scope_and_spawn() {
let pool = TaskPool::new();
let foo = Box::new(42);
let foo = &*foo;
let local_count = Arc::new(AtomicI32::new(0));
let non_local_count = Arc::new(AtomicI32::new(0));
let outputs = pool.scope(|scope| {
for i in 0..100 {
if i % 2 == 0 {
let count_clone = non_local_count.clone();
scope.spawn(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
} else {
let count_clone = local_count.clone();
scope.spawn_on_scope(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
}
}
});
for output in &outputs {
assert_eq!(*output, 42);
}
assert_eq!(outputs.len(), 100);
assert_eq!(local_count.load(Ordering::Relaxed), 50);
assert_eq!(non_local_count.load(Ordering::Relaxed), 50);
}
#[test]
fn test_thread_locality() {
let pool = Arc::new(TaskPool::new());
let count = Arc::new(AtomicI32::new(0));
let barrier = Arc::new(Barrier::new(101));
let thread_check_failed = Arc::new(AtomicBool::new(false));
for _ in 0..100 {
let inner_barrier = barrier.clone();
let count_clone = count.clone();
let inner_pool = pool.clone();
let inner_thread_check_failed = thread_check_failed.clone();
std::thread::spawn(move || {
inner_pool.scope(|scope| {
let inner_count_clone = count_clone.clone();
scope.spawn(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
});
let spawner = std::thread::current().id();
let inner_count_clone = count_clone.clone();
scope.spawn_on_scope(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
if std::thread::current().id() != spawner {
// NOTE: This check is using an atomic rather than simply panicking the
// thread to avoid deadlocking the barrier on failure
inner_thread_check_failed.store(true, Ordering::Release);
}
});
});
inner_barrier.wait();
});
}
barrier.wait();
assert!(!thread_check_failed.load(Ordering::Acquire));
assert_eq!(count.load(Ordering::Acquire), 200);
}
#[test]
fn test_nested_spawn() {
let pool = TaskPool::new();
let foo = Box::new(42);
let foo = &*foo;
let count = Arc::new(AtomicI32::new(0));
let outputs: Vec<i32> = pool.scope(|scope| {
for _ in 0..10 {
let count_clone = count.clone();
scope.spawn(async move {
for _ in 0..10 {
let count_clone_clone = count_clone.clone();
scope.spawn(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
}
*foo
});
}
});
for output in &outputs {
assert_eq!(*output, 42);
}
// the inner loop runs 100 times and the outer one runs 10. 100 + 10
assert_eq!(outputs.len(), 110);
assert_eq!(count.load(Ordering::Relaxed), 100);
}
#[test]
fn test_nested_locality() {
let pool = Arc::new(TaskPool::new());
let count = Arc::new(AtomicI32::new(0));
let barrier = Arc::new(Barrier::new(101));
let thread_check_failed = Arc::new(AtomicBool::new(false));
for _ in 0..100 {
let inner_barrier = barrier.clone();
let count_clone = count.clone();
let inner_pool = pool.clone();
let inner_thread_check_failed = thread_check_failed.clone();
std::thread::spawn(move || {
inner_pool.scope(|scope| {
let spawner = std::thread::current().id();
let inner_count_clone = count_clone.clone();
scope.spawn(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
// spawning on the scope from another thread runs the futures on the scope's thread
scope.spawn_on_scope(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
if std::thread::current().id() != spawner {
// NOTE: This check is using an atomic rather than simply panicking the
// thread to avoid deadlocking the barrier on failure
inner_thread_check_failed.store(true, Ordering::Release);
}
});
});
});
inner_barrier.wait();
});
}
barrier.wait();
assert!(!thread_check_failed.load(Ordering::Acquire));
assert_eq!(count.load(Ordering::Acquire), 200);
}
}