Skip to content

billaue2/sumokoin

Repository files navigation

Sumokoin

Copyright (c) 2017, Sumokoin.org

Copyright (c) 2014-2017, The Monero Project

Portions Copyright (c) 2012-2013, The Cryptonote developers

Development Resources

Introduction

Sumokoin (スモコイン in Japanese) is a fork from Monero, one of the most respectable cryptocurrency well-known for security, privacy, untraceability and active development. Starting as an educational project, we found that it would be great to create a new coin with high level of privacy by (1) moving forward right away to Ring Confidential Transactions (RingCT), (2) setting minimum transaction mixin to 12 that would greatly reduce chance of being attacked, traced or identified by (blockchain) statistical analysis.

Sumokoin, therefore, is a new Monero without its legacy, a truely fungible cryptocurrency among just a few ones in the market.

Coin Supply & Emission

  • Total supply: 88,888,888 coins in first 20 years, then 263,000 coins each year for inflation. About 10% (~8.8 million) was premined to reserve for future development, i.e. 80 million coins available for community mining.
  • Coin symbol: SUMO
  • Coin Units:
    • 1 Sumoshi  = 0.000000001 SUMO (10-9 - the smallest coin unit)
    • 1 Sumokun = 0.000001 SUMO (10-6)
    • 1 Sumosan = 0.001 SUMO (10-3)
  • Hash algorithm: CryptoNight (Proof-Of-Work)
  • Emission scheme: Sumokoin's block reward changes every 6-months as the following "Camel" distribution* (inspired by real-world mining production like of crude oil, coal etc. that is often slow at first, accelerated in the next few years before declined and depleted). However, the emission path of Sumokoin is generally not far apart from what of Bitcoin (view charts below).

* The emulated algorithm of Sumokoin block-reward emission can be found in Python and C++ scripts at scripts directory.

About this Project

This is the core implementation of Sumokoin. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Sumokoin that uses the protocol and network in a compatible manner.

As with many development projects, the repository on Github is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.

Anyone is welcome to contribute to Sumokoin's codebase! If you have a fix or code change, feel free to submit is as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.

License

Please view LICENSE

License

Compiling Sumokoin from Source

Dependencies

The following table summarizes the tools and libraries required to build. A few of the libraries are also included in this repository (marked as "Vendored"). By default, the build uses the library installed on the system, and ignores the vendored sources. However, if no library is found installed on the system, then the vendored source will be built and used. The vendored sources are also used for statically-linked builds because distribution packages often include only shared library binaries (.so) but not static library archives (.a).

Dep Min. Version Vendored Debian/Ubuntu Pkg Arch Pkg Optional Purpose
GCC 4.7.3 NO build-essential base-devel NO
CMake 3.0.0 NO cmake cmake NO
pkg-config any NO pkg-config base-devel NO
Boost 1.58 NO libboost-all-dev boost NO
BerkeleyDB 4.8 NO libdb{,++}-dev db NO
libevent 2.0 NO libevent-dev libevent NO
libunbound 1.4.16 YES libunbound-dev unbound NO
libminiupnpc 2.0 YES libminiupnpc-dev miniupnpc YES NAT punching
libunwind any NO libunwind8-dev libunwind YES stack traces
ldns 1.6.17 NO libldns-dev ldns YES ?
expat 1.1 NO libexpat1-dev expat YES ?
GTest 1.5 YES libgtest-dev^ gtest YES test suite
Doxygen any NO doxygen doxygen YES documentation
Graphviz any NO graphviz graphviz YES documentation

[^] On Debian/Ubuntu libgtest-dev only includes sources and headers. You must build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/

Build instructions

Sumokoin uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.

On Linux and OS X

  • Install the dependencies (see the list above)

    - On Ubuntu 16.04, essential dependencies can be installed with the following command:

      sudo apt install build-essential cmake libboost-all-dev libssl-dev pkg-config
    
  • Change to the root of the source code directory and build:

      cd sumokoin
      make
    

    Optional: If your machine has several cores and enough memory, enable parallel build by running make -j<number of threads> instead of make. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.

  • The resulting executables can be found in build/release/bin

  • Add PATH="$PATH:$HOME/sumokoin/build/release/bin" to .profile

  • Run Sumokoin with sumokoind --detach

  • Optional: build and run the test suite to verify the binaries:

      make release-test
    

    NOTE: coretests test may take a few hours to complete.

  • Optional: to build binaries suitable for debugging:

       make debug
    
  • Optional: to build statically-linked binaries:

       make release-static
    
  • Optional: build documentation in doc/html (omit HAVE_DOT=YES if graphviz is not installed):

      HAVE_DOT=YES doxygen Doxyfile
    

On the Raspberry Pi

Tested on a Raspberry Pi 2 with a clean install of minimal Debian Jessie from https://www.raspberrypi.org/downloads/raspbian/

  • apt-get update && apt-get upgrade to install all of the latest software

  • Install the dependencies for Sumokoin except libunwind and libboost-all-dev

  • Increase the system swap size:

	sudo /etc/init.d/dphys-swapfile stop  
	sudo nano /etc/dphys-swapfile  
	CONF_SWAPSIZE=1024  
	sudo /etc/init.d/dphys-swapfile start  
  • Install the latest version of boost (this may first require invoking apt-get remove --purge libboost* to remove a previous version if you're not using a clean install):
	cd  
	wget https://sourceforge.net/projects/boost/files/boost/1.62.0/boost_1_62_0.tar.bz2  
	tar xvfo boost_1_62_0.tar.bz2  
	cd boost_1_62_0  
	./bootstrap.sh  
	sudo ./b2  
  • Wait ~8 hours

    sudo ./bjam install

  • Wait ~4 hours

  • Change to the root of the source code directory and build:

      cd sumokoin
      make release
    
  • Wait ~4 hours

  • The resulting executables can be found in build/release/bin

  • Add PATH="$PATH:$HOME/sumokoin/build/release/bin" to .profile

  • Run Sumokoin with sumokoind --detach

  • You may wish to reduce the size of the swap file after the build has finished, and delete the boost directory from your home directory

On Windows:

Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.

Preparing the Build Environment

  • Download and install the MSYS2 installer, either the 64-bit or the 32-bit package, depending on your system.

  • Open the MSYS shell via the MSYS2 Shell shortcut

  • Update packages using pacman:

      pacman -Syuu  
    
  • Exit the MSYS shell using Alt+F4

  • Edit the properties for the MSYS2 Shell shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds

  • Restart MSYS shell via modified shortcut and update packages again using pacman:

      pacman -Syuu  
    
  • Install dependencies:

    To build for 64-bit Windows:

      pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost
    

    To build for 32-bit Windows:

      pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost
    
  • Open the MingW shell via MinGW-w64-Win64 Shell shortcut on 64-bit Windows or MinGW-w64-Win64 Shell shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.

Building

  • Make sure path to MSYS2 installed directory in Makefile is correct.

  • If you are on a 64-bit system, run:

      make release-static-win64
    
  • If you are on a 32-bit system, run:

      make release-static-win32
    
  • The resulting executables can be found in build/mingw64/release/bin or build/mingw32/release/bin accordingly.

On FreeBSD:

  • Update packages and install the dependencies (on FreeBSD 11.0 x64):

      pkg update; pkg install wget git pkgconf gcc49 cmake db6 icu libevent unbound googletest ldns expat bison boost-libs;
    
  • Clone source code, change to the root of the source code directory and build:

      git clone https://github.com/sumoprojects/sumokoin; cd sumokoin; make release-static;
    

On OpenBSD:

This has been tested on OpenBSD 5.8.

You will need to add a few packages to your system. pkg_add db cmake gcc gcc-libs g++ miniupnpc gtest.

The doxygen and graphviz packages are optional and require the xbase set.

The Boost package has a bug that will prevent librpc.a from building correctly. In order to fix this, you will have to Build boost yourself from scratch. Follow the directions here (under "Building Boost"): https://github.com/bitcoin/bitcoin/blob/master/doc/build-openbsd.md

You will have to add the serialization, date_time, and regex modules to Boost when building as they are needed by Sumokoin.

To build: env CC=egcc CXX=eg++ CPP=ecpp DEVELOPER_LOCAL_TOOLS=1 BOOST_ROOT=/path/to/the/boost/you/built make release-static-64

Building Portable Statically Linked Binaries

By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:

  • make release-static-64 builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processors
  • make release-static-32 builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processors
  • make release-static-armv8 builds binaries on Linux portable across POSIX systems on armv8 processors
  • make release-static-armv7 builds binaries on Linux portable across POSIX systems on armv7 processors
  • make release-static-armv6 builds binaries on Linux portable across POSIX systems on armv6 processors
  • make release-static-win64 builds binaries on 64-bit Windows portable across 64-bit Windows systems
  • make release-static-win32 builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems

Running sumokoind

The build places the binary in bin/ sub-directory within the build directory from which cmake was invoked (repository root by default). To run in foreground:

./bin/sumokoind

To list all available options, run ./bin/sumokoind --help. Options can be specified either on the command line or in a configuration file passed by the --config-file argument. To specify an option in the configuration file, add a line with the syntax argumentname=value, where argumentname is the name of the argument without the leading dashes, for example log-level=1.

To run in background:

./bin/sumokoind --log-file sumokoind.log --detach

To run as a systemd service, copy sumokoind.service to /etc/systemd/system/ and sumokoind.conf to /etc/. The example service assumes that the user sumokoin exists and its home is the data directory specified in the example config.

If you're on Mac, you may need to add the --max-concurrency 1 option to sumo-wallet-cli, and possibly sumokoind, if you get crashes refreshing.

Internationalization

Please see README.i18n

Using Tor

While Sumokoin isn't made to integrate with Tor, it can be used wrapped with torsocks, if you add --p2p-bind-ip 127.0.0.1 to the sumokoind command line. You also want to set DNS requests to go over TCP, so they'll be routed through Tor, by setting DNS_PUBLIC=tcp. You may also disable IGD (UPnP port forwarding negotiation), which is pointless with Tor. To allow local connections from the wallet, you might have to add TORSOCKS_ALLOW_INBOUND=1, some OSes need it and some don't. Example:

DNS_PUBLIC=tcp torsocks sumokoind --p2p-bind-ip 127.0.0.1 --no-igd

or:

DNS_PUBLIC=tcp TORSOCKS_ALLOW_INBOUND=1 torsocks sumokoind --p2p-bind-ip 127.0.0.1 --no-igd

TAILS ships with a very restrictive set of firewall rules. Therefore, you need to add a rule to allow this connection too, in addition to telling torsocks to allow inbound connections. Full example:

sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 18081 -j ACCEPT

DNS_PUBLIC=tcp torsocks ./sumokoind --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 --data-dir /home/your/directory/to/the/blockchain

./sumo-wallet-cli

Using readline

While sumokoind and sumo-wallet-cli do not use readline directly, most of the functionality can be obtained by running them via rlwrap. This allows command recall, edit capabilities, etc. It does not give autocompletion without an extra completion file, however. To use rlwrap, simply prepend rlwrap to the command line, eg:

rlwrap bin/sumo-wallet-cli --wallet-file /path/to/wallet

Note: rlwrap will save things like your seed and private keys, if you supply them on prompt. You may want to not use rlwrap when you use simplewallet to restore from seed, etc.

Debugging

This section contains general instructions for debugging failed installs or problems encountered with Sumokoin. First ensure you are running the latest version built from the github repo.

LMDB

Instructions for debugging suspected blockchain corruption as per @HYC

There is an mdb_stat command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:

cd ~/sumokoin/external/db_drivers/liblmdb && make

The output of mdb_stat -ea <path to blockchain dir> will indicate inconsistencies in the blocks, block_heights and block_info table.

The output of mdb_dump -s blocks <path to blockchain dir> and mdb_dump -s block_info <path to blockchain dir> is useful for indicating whether blocks and block_info contain the same keys.

These records are dumped as hex data, where the first line is the key and the second line is the data.