Skip to content

Commit

Permalink
接入Hugging Face Playground
Browse files Browse the repository at this point in the history
  • Loading branch information
inCloudRain committed Nov 25, 2024
1 parent e62deca commit 8ded605
Show file tree
Hide file tree
Showing 5 changed files with 245 additions and 5 deletions.
7 changes: 4 additions & 3 deletions config.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,8 @@
"gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
"gpt-4", "gpt-4-32k", "azure-gpt-4", "glm-4", "glm-4v", "glm-3-turbo",
"gemini-1.5-pro", "chatglm3"
"gemini-1.5-pro", "chatglm3", "HF:Qwen/Qwen2.5-72B-Instruct",
"HF:meta-llama/Meta-Llama-3-70B-Instruct"
]

EMBEDDING_MODEL = "text-embedding-3-small"
Expand All @@ -55,6 +56,7 @@
# "deepseek-chat" ,"deepseek-coder",
# "gemini-1.5-flash",
# "yi-34b-chat-0205","yi-34b-chat-200k","yi-large","yi-medium","yi-spark","yi-large-turbo","yi-large-preview",
# Hugging Face Playground中的模型,可自行添加,模型名字前需加"HF:"
# ]
# --- --- --- ---
# 此外,您还可以在接入one-api/vllm/ollama/Openroute时,
Expand Down Expand Up @@ -259,8 +261,7 @@
# Google Gemini API-Key
GEMINI_API_KEY = ''


# HUGGINGFACE的TOKEN,下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
# HUGGINGFACE的TOKEN,使用Playground及下载LLAMA时起作用 https://huggingface.co/docs/hub/security-tokens
HUGGINGFACE_ACCESS_TOKEN = "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"


Expand Down
34 changes: 34 additions & 0 deletions request_llms/bridge_all.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,9 @@
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
from .bridge_zhipu import predict as zhipu_ui

from .bridge_hf import predict_no_ui_long_connection as hf_noui
from .bridge_hf import predict as hf_ui

from .bridge_taichu import predict_no_ui_long_connection as taichu_noui
from .bridge_taichu import predict as taichu_ui

Expand Down Expand Up @@ -987,6 +990,37 @@ def decode(self, *args, **kwargs):
})
except:
logger.error(trimmed_format_exc())
# -=-=-=-=-=-=- Hugging Face Playground -=-=-=-=-=-=-
if any("HF:" in x for x in AVAIL_LLM_MODELS):
try:
for x in AVAIL_LLM_MODELS:
if x == "HF:Qwen/Qwen2.5-72B-Instruct" or x == 'HF:meta-llama/Meta-Llama-3-70B-Instruct':
model_info.update({
x: {
"fn_with_ui": hf_ui,
"fn_without_ui": hf_noui,
"endpoint": None,
"max_token": 8192,
'can_multi_thread': True,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
elif "HF:" in x: # 默认max_token=8192
model_info.update({
x: {
"fn_with_ui": hf_ui,
"fn_without_ui": hf_noui,
"endpoint": None,
"max_token": 8192,
'can_multi_thread': True,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
})
except:
logger.error(trimmed_format_exc())

# -=-=-=-=-=-=- 幻方-深度求索大模型 -=-=-=-=-=-=-
if "deepseekcoder" in AVAIL_LLM_MODELS: # deepseekcoder
try:
Expand Down
81 changes: 81 additions & 0 deletions request_llms/bridge_hf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import time
import os
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
from toolbox import ChatBotWithCookies

model_name = 'Hugging Face Playground'


def validate_key():
HUGGINGFACE_ACCESS_TOKEN = get_conf("HUGGINGFACE_ACCESS_TOKEN")
if HUGGINGFACE_ACCESS_TOKEN == '': return False
return True


def predict_no_ui_long_connection(inputs: str, llm_kwargs: dict, history: list = [], sys_prompt: str = "",
observe_window: list = [], console_slience: bool = False):
"""
⭐多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
watch_dog_patience = 5
response = ""

llm_kwargs["llm_model"] = llm_kwargs["llm_model"].replace("HF:", "").strip()

if validate_key() is False:
raise RuntimeError('请配置HUGGINGFACE_ACCESS_TOKEN')

# 开始接收回复
from .com_hfplayground import HFPlaygroundInit
hfp_init = HFPlaygroundInit()
for chunk, response in hfp_init.generate_chat(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time() - observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response


def predict(inputs: str, llm_kwargs: dict, plugin_kwargs: dict, chatbot: ChatBotWithCookies,
history: list = [], system_prompt: str = '', stream: bool = True, additional_fn: str = None):
"""
⭐单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append([inputs, ""])
yield from update_ui(chatbot=chatbot, history=history)

# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
check_packages(["openai"])
except:
yield from update_ui_lastest_msg(
f"导入软件依赖失败。使用该模型需要额外依赖,安装方法```pip install --upgrade openai```。",
chatbot=chatbot, history=history, delay=0)
return

if validate_key() is False:
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置HUGGINGFACE_ACCESS_TOKEN", chatbot=chatbot,
history=history, delay=0)
return

if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
chatbot[-1] = [inputs, ""]
yield from update_ui(chatbot=chatbot, history=history)

llm_kwargs["llm_model"] = llm_kwargs["llm_model"].replace("HF:", "").strip()

# 开始接收回复
from .com_hfplayground import HFPlaygroundInit
hfp_init = HFPlaygroundInit()
for chunk, response in hfp_init.generate_chat(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = [inputs, response]
yield from update_ui(chatbot=chatbot, history=history)
history.extend([inputs, response])
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
yield from update_ui(chatbot=chatbot, history=history)
122 changes: 122 additions & 0 deletions request_llms/com_hfplayground.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
import httpx
import openai
from openai import OpenAI
from toolbox import get_conf, encode_image, get_pictures_list
from loguru import logger
import os

proxies = get_conf("proxies")
if proxies is not None:
proxies = {k + "://": v for k, v in proxies.items()}


def input_encode_handler(inputs: str, llm_kwargs: dict):
if llm_kwargs["most_recent_uploaded"].get("path"):
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
md_encode = []
for md_path in image_paths:
type_ = os.path.splitext(md_path)[1].replace(".", "")
type_ = "jpeg" if type_ == "jpg" else type_
md_encode.append({"data": encode_image(md_path), "type": type_})
return inputs, md_encode


class HFPlaygroundInit:

def __init__(self):
HUGGINGFACE_ACCESS_TOKEN = get_conf("HUGGINGFACE_ACCESS_TOKEN")
self.client = OpenAI(base_url="https://api-inference.huggingface.co/v1/", api_key=HUGGINGFACE_ACCESS_TOKEN,
http_client=httpx.Client(proxies=proxies))
self.model = ''

def __conversation_user(self, user_input: str, llm_kwargs: dict):
return {"role": "user", "content": user_input}

def __conversation_history(self, history: list, llm_kwargs: dict):
messages = []
conversation_cnt = len(history) // 2
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
what_gpt_answer = {
"role": "assistant",
"content": history[index + 1]
}
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
return messages

@staticmethod
def preprocess_param(param, default=0.95, min_val=0.01, max_val=0.99):
"""预处理参数,保证其在允许范围内,并处理精度问题"""
try:
param = float(param)
except ValueError:
return default

if param <= min_val:
return min_val
elif param >= max_val:
return max_val
else:
return round(param, 2) # 可挑选精度,目前是两位小数

def __conversation_message_payload(self, inputs: str, llm_kwargs: dict, history: list, system_prompt: str):
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
self.model = llm_kwargs['llm_model']
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
if inputs.strip() == "": # 处理空输入导致报错的问题 https://github.com/binary-husky/gpt_academic/issues/1640 提示 {"error":{"code":"1214","message":"messages[1]:content和tool_calls 字段不能同时为空"}
inputs = "." # 空格、换行、空字符串都会报错,所以用最没有意义的一个点代替
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
"""
采样温度,控制输出的随机性,必须为正数
取值范围是:(0.0, 1.0),不能等于 0,默认值为 0.95,
值越大,会使输出更随机,更具创造性;
值越小,输出会更加稳定或确定
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数
"""
temperature = self.preprocess_param(
param=llm_kwargs.get('temperature', 0.95),
default=0.95,
min_val=0.01,
max_val=0.99
)
"""
用温度取样的另一种方法,称为核取样
取值范围是:(0.0, 1.0) 开区间,
不能等于 0 或 1,默认值为 0.7
模型考虑具有 top_p 概率质量 tokens 的结果
例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens
建议您根据应用场景调整 top_p 或 temperature 参数,
但不要同时调整两个参数
"""
top_p = self.preprocess_param(
param=llm_kwargs.get('top_p', 0.70),
default=0.70,
min_val=0.01,
max_val=0.99
)
response = self.client.chat.completions.create(
model=self.model, messages=messages, stream=True,
temperature=temperature,
top_p=top_p,
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4),
)
return response

def generate_chat(self, inputs: str, llm_kwargs: dict, history: list, system_prompt: str):
self.model = llm_kwargs['llm_model']
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
bro_results = ''
for chunk in response:
bro_results += chunk.choices[0].delta.content
yield chunk.choices[0].delta.content, bro_results


if __name__ == '__main__':
HFP = HFPlaygroundInit()
r = HFP.generate_chat('你好', {'llm_model': 'Qwen/Qwen2.5-72B-Instruct'}, [], '你是WPSAi')
for i in r:
print(i)
6 changes: 4 additions & 2 deletions tests/test_llms.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,15 @@ def validate_path():

if "在线模型":
if __name__ == "__main__":
from request_llms.bridge_taichu import predict_no_ui_long_connection
from request_llms.bridge_hf import predict_no_ui_long_connection

# from request_llms.bridge_taichu import predict_no_ui_long_connection
# from request_llms.bridge_cohere import predict_no_ui_long_connection
# from request_llms.bridge_spark import predict_no_ui_long_connection
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
llm_kwargs = {
"llm_model": "taichu",
"llm_model": "Qwen/Qwen2.5-72B-Instruct",
"max_length": 4096,
"top_p": 1,
"temperature": 1,
Expand Down

0 comments on commit 8ded605

Please sign in to comment.