Skip to content

Commit

Permalink
Save _normalize_weak calls in group add methods
Browse files Browse the repository at this point in the history
Also update the operations count comments in each of the affected
functions accordingly and remove a redundant VERIFY_CHECK in
secp256k1_gej_add_ge (the infinity value range check [0,1] is already
covered by secp256k1_gej_verify above).

Co-authored-by: Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
Co-authored-by: Tim Ruffing <crypto@timruffing.de>
  • Loading branch information
3 people committed Jul 21, 2023
1 parent d4527d6 commit 31bc9a4
Showing 1 changed file with 26 additions and 27 deletions.
53 changes: 26 additions & 27 deletions src/group_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -534,7 +534,7 @@ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, cons
}

static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
/* 8 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
/* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
Expand All @@ -553,11 +553,11 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
}

secp256k1_fe_sqr(&z12, &a->z);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
u1 = a->x;
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
s1 = a->y;
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&h, &u1, 6); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
Expand Down Expand Up @@ -597,7 +597,7 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
}

static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
/* 9 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
/* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
Expand Down Expand Up @@ -630,11 +630,11 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
secp256k1_fe_mul(&az, &a->z, bzinv);

secp256k1_fe_sqr(&z12, &az);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
u1 = a->x;
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
s1 = a->y;
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&h, &u1, 6); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
Expand Down Expand Up @@ -668,14 +668,13 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,


static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
/* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
/* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int degenerate;
secp256k1_gej_verify(a);
secp256k1_ge_verify(b);
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);

/* In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
Expand Down Expand Up @@ -728,17 +727,17 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
*/

secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
u1 = a->x; /* u1 = U1 = X1*Z2^2 (6) */
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
s1 = a->y; /* s1 = S1 = Y1*Z2^3 (4) */
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (7) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (5) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m);
Expand All @@ -748,34 +747,34 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
* so we set R/M equal to this. */
rr_alt = s1;
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (8) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (8) */

secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (8) */
secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (8) */
/* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda; R and M represent the explicit
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */
secp256k1_fe_negate(&q, &t, 7); /* q = -T (8) */
secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
* zero (which is "computed" by cmov). So the cost is one squaring
* versus two multiplications. */
secp256k1_fe_sqr(&n, &n);
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (5) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (6) */
secp256k1_fe_negate(&r->y, &t, 6); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (7) */
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (4) */

/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
Expand Down

0 comments on commit 31bc9a4

Please sign in to comment.