-
Notifications
You must be signed in to change notification settings - Fork 19
Install
- Python version: ANN-SoLo requires Python version 3.6 to 3.9. Python 3.10 and newer are currently not supported yet.
- Operating system
- CPU version: Linux and OS X.
- GPU version: Linux, using an NVIDIA CUDA-enabled GPU device.
We recommend using conda to create a separate environment for ANN-SoLo:
conda create -n ann_solo python=3.7
Next, activate this environment:
conda activate ann_solo
NumPy needs to be available before ANN-SoLo can be installed, whereas the other dependencies can be automatically installed while you install ANN-SoLo. Here we will explicitly install all dependencies from the appropriate conda channels simultaneously:
conda install configargparse cython joblib matplotlib numba numexpr numpy pandas pyteomics scipy spectrum_utils tqdm -c defaults -c bioconda -c conda-forge
The mmh3
library is not available as a conda package but can be installed using pip
:
pip install mmh3
The Faiss installation depends on a specific GPU version. Please refer to the Faiss installation instructions for more information.
To install the CPU-version of Faiss:
conda install faiss-cpu -c pytorch
To install the GPU-version of Faiss (please make sure your GPU supports the appropriate CUDA version):
conda install faiss-gpu cudatoolkit=10.0 -c pytorch
Now we can install ANN-SoLo using pip
:
pip install ann_solo
You can verify whether ANN-SoLo has been installed correctly using the ann_solo
command:
ann_solo -h
Congratulations! You can now start using ANN-SoLo to process your proteomics data.
ANN-SoLo has the following dependencies:
- ConfigArgParse
- Cython
- Faiss
- Joblib
- Matplotlib
- mmh3
- Numba
- NumExpr
- NumPy
- Pandas
- Pyteomics
- SciPy
- spectrum_utils
- tqdm
See above for the recommended way to install these dependencies using conda. Any missing dependencies will be automatically installed when you install ANN-SoLo via pip
.