Skip to content

Commit

Permalink
Override onnx clip loading (#13800)
Browse files Browse the repository at this point in the history
* Set caching options for hardware providers

* Always use CPU for searching

* Use new install strategy to remove onnxruntime and then install post wheels
  • Loading branch information
NickM-27 authored Sep 17, 2024
1 parent 90d7fc6 commit 2362d0e
Show file tree
Hide file tree
Showing 6 changed files with 82 additions and 7 deletions.
12 changes: 10 additions & 2 deletions docker/main/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -170,8 +170,8 @@ RUN /build_pysqlite3.sh
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
RUN pip3 wheel --wheel-dir=/wheels -r /requirements-wheels.txt

COPY docker/main/requirements-wheels-nodeps.txt /requirements-wheels-nodeps.txt
RUN pip3 wheel --no-deps --wheel-dir=/wheels -r /requirements-wheels-nodeps.txt
COPY docker/main/requirements-wheels-post.txt /requirements-wheels-post.txt
RUN pip3 wheel --no-deps --wheel-dir=/wheels-post -r /requirements-wheels-post.txt


# Collect deps in a single layer
Expand Down Expand Up @@ -215,6 +215,14 @@ RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
python3 -m pip install --upgrade pip && \
pip3 install -U /deps/wheels/*.whl

# We have to uninstall this dependency specifically
# as it will break onnxruntime-openvino
RUN pip3 uninstall -y onnxruntime

RUN --mount=type=bind,from=wheels,source=/wheels-post,target=/deps/wheels \
python3 -m pip install --upgrade pip && \
pip3 install -U /deps/wheels/*.whl

COPY --from=deps-rootfs / /

RUN ldconfig
Expand Down
1 change: 0 additions & 1 deletion docker/main/requirements-wheels-nodeps.txt

This file was deleted.

3 changes: 3 additions & 0 deletions docker/main/requirements-wheels-post.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# ONNX
onnxruntime-openvino == 1.18.* ; platform_machine == 'x86_64'
onnxruntime == 1.18.* ; platform_machine == 'aarch64'
3 changes: 1 addition & 2 deletions docker/main/requirements-wheels.txt
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,9 @@ ws4py == 0.5.*
unidecode == 1.3.*
# OpenVino & ONNX
openvino == 2024.1.*
onnxruntime-openvino == 1.18.* ; platform_machine == 'x86_64'
onnxruntime == 1.18.* ; platform_machine == 'aarch64'
# Embeddings
chromadb == 0.5.0
onnx_clip == 4.0.*
# Generative AI
google-generativeai == 0.6.*
ollama == 0.2.*
Expand Down
5 changes: 4 additions & 1 deletion frigate/embeddings/embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,10 @@ def thumbnail(self) -> Collection:
@property
def description(self) -> Collection:
return self.client.get_or_create_collection(
name="event_description", embedding_function=MiniLMEmbedding()
name="event_description",
embedding_function=MiniLMEmbedding(
preferred_providers=["CPUExecutionProvider"]
),
)

def reindex(self) -> None:
Expand Down
65 changes: 64 additions & 1 deletion frigate/embeddings/functions/clip.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,13 @@
"""CLIP Embeddings for Frigate."""

import errno
import logging
import os
from pathlib import Path
from typing import Tuple, Union

import onnxruntime as ort
import requests
from chromadb import EmbeddingFunction, Embeddings
from chromadb.api.types import (
Documents,
Expand Down Expand Up @@ -39,10 +43,69 @@ def _load_models(
models = []
for model_file in [IMAGE_MODEL_FILE, TEXT_MODEL_FILE]:
path = os.path.join(MODEL_CACHE_DIR, "clip", model_file)
models.append(OnnxClip._load_model(path, silent))
models.append(Clip._load_model(path, silent))

return models[0], models[1]

@staticmethod
def _load_model(path: str, silent: bool):
providers = ort.get_available_providers()
options = []

for provider in providers:
if provider == "TensorrtExecutionProvider":
options.append(
{
"trt_timing_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_enable": True,
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
elif provider == "OpenVINOExecutionProvider":
options.append({"cache_dir": "/config/model_cache/openvino/ort"})
else:
options.append({})

try:
if os.path.exists(path):
return ort.InferenceSession(
path, providers=providers, provider_options=options
)
else:
raise FileNotFoundError(
errno.ENOENT,
os.strerror(errno.ENOENT),
path,
)
except Exception:
s3_url = f"https://lakera-clip.s3.eu-west-1.amazonaws.com/{os.path.basename(path)}"
if not silent:
logging.info(
f"The model file ({path}) doesn't exist "
f"or it is invalid. Downloading it from the public S3 "
f"bucket: {s3_url}." # noqa: E501
)

# Download from S3
# Saving to a temporary file first to avoid corrupting the file
temporary_filename = Path(path).with_name(os.path.basename(path) + ".part")

# Create any missing directories in the path
temporary_filename.parent.mkdir(parents=True, exist_ok=True)

with requests.get(s3_url, stream=True) as r:
r.raise_for_status()
with open(temporary_filename, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
f.flush()
# Finally move the temporary file to the correct location
temporary_filename.rename(path)
return ort.InferenceSession(
path, providers=provider, provider_options=options
)


class ClipEmbedding(EmbeddingFunction):
"""Embedding function for CLIP model used in Chroma."""
Expand Down

0 comments on commit 2362d0e

Please sign in to comment.