Skip to content

Commit

Permalink
Offline IVF powered by faiss big batch search (facebookresearch#3175)
Browse files Browse the repository at this point in the history
Summary:
This PR introduces the offline IVF (OIVF) framework  which contains some tooling to run search using IVFPQ indexes (plus OPQ pretransforms) for large batches of queries using [big_batch_search](https://github.com/mlomeli1/faiss/blob/main/contrib/big_batch_search.py) and GPU faiss. See the [README](https://github.com/mlomeli1/faiss/blob/oivf/demos/offline_ivf/README.md) for details about using this framework.

This PR includes the following unit tests, which can be run with the unittest library as so:
````
~/faiss/demos/offline_ivf$ python3 -m unittest tests/test_iterate_input.py -k test_iterate_back
````

In test_offline_ivf:
````
test_consistency_check
test_train_index
test_index_shard_equal_file_sizes
test_index_shard_unequal_file_sizes
 test_search
test_evaluate_without_margin
test_evaluate_without_margin_OPQ
test_evaluate_with_margin
test_split_batch_size_bigger_than_file_sizes
test_split_batch_size_smaller_than_file_sizes
test_split_files_with_corrupted_input_file
````

In test_iterate_input:
````
test_iterate_input_file_larger_than_batch
test_get_vs_iterate
test_iterate_back
````

Pull Request resolved: facebookresearch#3175

Reviewed By: algoriddle

Differential Revision: D52218447

Pulled By: mlomeli1

fbshipit-source-id: 78b12457c79b02eb2c9ae993560f2e295798e7e5
  • Loading branch information
mlomeli1 authored and abhinavdangeti committed Jul 12, 2024
1 parent 2c39a26 commit ac0d22a
Show file tree
Hide file tree
Showing 34 changed files with 2,647 additions and 0 deletions.
52 changes: 52 additions & 0 deletions demos/offline_ivf/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@

# Offline IVF

This folder contains the code for the offline ivf algorithm powered by faiss big batch search.

Create a conda env:

`conda create --name oivf python=3.10`

`conda activate oivf`

`conda install -c pytorch/label/nightly -c nvidia faiss-gpu=1.7.4`

`conda install tqdm`

`conda install pyyaml`

`conda install -c conda-forge submitit`


## Run book

1. Optionally shard your dataset (see create_sharded_dataset.py) and create the corresponding yaml file `config_ssnpp.yaml`. You can use `generate_config.py` by specifying the root directory of your dataset and the files with the data shards

`python generate_config`

2. Run the train index command

`python run.py --command train_index --config config_ssnpp.yaml --xb ssnpp_1B`


3. Run the index-shard command so it produces sharded indexes, required for the search step

`python run.py --command index_shard --config config_ssnpp.yaml --xb ssnpp_1B`


6. Send jobs to the cluster to run search

`python run.py --command search --config config_ssnpp.yaml --xb ssnpp_1B --cluster_run --partition <PARTITION-NAME>`


Remarks about the `search` command: it is assumed that the database vectors are the query vectors when performing the search step.
a. If the query vectors are different than the database vectors, it should be passed in the xq argument
b. A new dataset needs to be prepared (step 1) before passing it to the query vectors argument `–xq`

`python run.py --command search --config config_ssnpp.yaml --xb ssnpp_1B --xq <QUERIES_DATASET_NAME>`


6. We can always run the consistency-check for sanity checks!

`python run.py --command consistency_check--config config_ssnpp.yaml --xb ssnpp_1B`

Empty file added demos/offline_ivf/__init__.py
Empty file.
109 changes: 109 additions & 0 deletions demos/offline_ivf/config_ssnpp.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
d: 256
output: /checkpoint/marialomeli/offline_faiss/ssnpp
index:
prod:
- 'IVF8192,PQ128'
non-prod:
- 'IVF16384,PQ128'
- 'IVF32768,PQ128'
nprobe:
prod:
- 512
non-prod:
- 256
- 128
- 1024
- 2048
- 4096
- 8192

k: 50
index_shard_size: 50000000
query_batch_size: 50000000
evaluation_sample: 10000
training_sample: 1572864
datasets:
ssnpp_1B:
root: /checkpoint/marialomeli/ssnpp_data
size: 1000000000
files:
- dtype: uint8
format: npy
name: ssnpp_0000000000.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000001.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000002.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000003.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000004.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000005.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000006.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000007.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000008.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000009.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000010.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000011.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000012.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000013.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000014.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000015.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000016.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000017.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000018.npy
size: 50000000
- dtype: uint8
format: npy
name: ssnpp_0000000019.npy
size: 50000000
63 changes: 63 additions & 0 deletions demos/offline_ivf/create_sharded_ssnpp_files.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import argparse
import os


def xbin_mmap(fname, dtype, maxn=-1):
"""
Code from
https://github.com/harsha-simhadri/big-ann-benchmarks/blob/main/benchmark/dataset_io.py#L94
mmap the competition file format for a given type of items
"""
n, d = map(int, np.fromfile(fname, dtype="uint32", count=2))
assert os.stat(fname).st_size == 8 + n * d * np.dtype(dtype).itemsize
if maxn > 0:
n = min(n, maxn)
return np.memmap(fname, dtype=dtype, mode="r", offset=8, shape=(n, d))


def main(args: argparse.Namespace):
ssnpp_data = xbin_mmap(fname=args.filepath, dtype="uint8")
num_batches = ssnpp_data.shape[0] // args.data_batch
assert (
ssnpp_data.shape[0] % args.data_batch == 0
), "num of embeddings per file should divide total num of embeddings"
for i in range(num_batches):
xb_batch = ssnpp_data[
i * args.data_batch : (i + 1) * args.data_batch, :
]
filename = args.output_dir + f"/ssnpp_{(i):010}.npy"
np.save(filename, xb_batch)
print(f"File {filename} is saved!")


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_batch",
dest="data_batch",
type=int,
default=50000000,
help="Number of embeddings per file, should be a divisor of 1B",
)
parser.add_argument(
"--filepath",
dest="filepath",
type=str,
default="/datasets01/big-ann-challenge-data/FB_ssnpp/FB_ssnpp_database.u8bin",
help="path of 1B ssnpp database vectors' original file",
)
parser.add_argument(
"--filepath",
dest="output_dir",
type=str,
default="/checkpoint/marialomeli/ssnpp_data",
help="path to put sharded files",
)

args = parser.parse_args()
main(args)
Loading

0 comments on commit ac0d22a

Please sign in to comment.