forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add onnx to tensorrt tools (open-mmlab#542)
- Loading branch information
q.yao
authored
May 12, 2021
1 parent
1052f8d
commit 5182fa1
Showing
2 changed files
with
316 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
import argparse | ||
import os | ||
import os.path as osp | ||
from typing import Iterable, Optional, Union | ||
|
||
import matplotlib.pyplot as plt | ||
import mmcv | ||
import numpy as np | ||
import onnxruntime as ort | ||
import torch | ||
from mmcv.ops import get_onnxruntime_op_path | ||
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt, | ||
save_trt_engine) | ||
|
||
from mmseg.apis.inference import LoadImage | ||
from mmseg.datasets import DATASETS | ||
from mmseg.datasets.pipelines import Compose | ||
|
||
|
||
def get_GiB(x: int): | ||
"""return x GiB.""" | ||
return x * (1 << 30) | ||
|
||
|
||
def _prepare_input_img(img_path: str, | ||
test_pipeline: Iterable[dict], | ||
shape: Optional[Iterable] = None, | ||
rescale_shape: Optional[Iterable] = None) -> dict: | ||
# build the data pipeline | ||
if shape is not None: | ||
test_pipeline[1]['img_scale'] = (shape[1], shape[0]) | ||
test_pipeline[1]['transforms'][0]['keep_ratio'] = False | ||
test_pipeline = [LoadImage()] + test_pipeline[1:] | ||
test_pipeline = Compose(test_pipeline) | ||
# prepare data | ||
data = dict(img=img_path) | ||
data = test_pipeline(data) | ||
imgs = data['img'] | ||
img_metas = [i.data for i in data['img_metas']] | ||
|
||
if rescale_shape is not None: | ||
for img_meta in img_metas: | ||
img_meta['ori_shape'] = tuple(rescale_shape) + (3, ) | ||
|
||
mm_inputs = {'imgs': imgs, 'img_metas': img_metas} | ||
|
||
return mm_inputs | ||
|
||
|
||
def _update_input_img(img_list: Iterable, img_meta_list: Iterable): | ||
# update img and its meta list | ||
N = img_list[0].size(0) | ||
img_meta = img_meta_list[0][0] | ||
img_shape = img_meta['img_shape'] | ||
ori_shape = img_meta['ori_shape'] | ||
pad_shape = img_meta['pad_shape'] | ||
new_img_meta_list = [[{ | ||
'img_shape': | ||
img_shape, | ||
'ori_shape': | ||
ori_shape, | ||
'pad_shape': | ||
pad_shape, | ||
'filename': | ||
img_meta['filename'], | ||
'scale_factor': | ||
(img_shape[1] / ori_shape[1], img_shape[0] / ori_shape[0]) * 2, | ||
'flip': | ||
False, | ||
} for _ in range(N)]] | ||
|
||
return img_list, new_img_meta_list | ||
|
||
|
||
def show_result_pyplot(img: Union[str, np.ndarray], | ||
result: np.ndarray, | ||
palette: Optional[Iterable] = None, | ||
fig_size: Iterable[int] = (15, 10), | ||
opacity: float = 0.5, | ||
title: str = '', | ||
block: bool = True): | ||
img = mmcv.imread(img) | ||
img = img.copy() | ||
seg = result[0] | ||
seg = mmcv.imresize(seg, img.shape[:2][::-1]) | ||
palette = np.array(palette) | ||
assert palette.shape[1] == 3 | ||
assert len(palette.shape) == 2 | ||
assert 0 < opacity <= 1.0 | ||
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) | ||
for label, color in enumerate(palette): | ||
color_seg[seg == label, :] = color | ||
# convert to BGR | ||
color_seg = color_seg[..., ::-1] | ||
|
||
img = img * (1 - opacity) + color_seg * opacity | ||
img = img.astype(np.uint8) | ||
|
||
plt.figure(figsize=fig_size) | ||
plt.imshow(mmcv.bgr2rgb(img)) | ||
plt.title(title) | ||
plt.tight_layout() | ||
plt.show(block=block) | ||
|
||
|
||
def onnx2tensorrt(onnx_file: str, | ||
trt_file: str, | ||
config: dict, | ||
input_config: dict, | ||
fp16: bool = False, | ||
verify: bool = False, | ||
show: bool = False, | ||
dataset: str = 'CityscapesDataset', | ||
workspace_size: int = 1, | ||
verbose: bool = False): | ||
import tensorrt as trt | ||
min_shape = input_config['min_shape'] | ||
max_shape = input_config['max_shape'] | ||
# create trt engine and wraper | ||
opt_shape_dict = {'input': [min_shape, min_shape, max_shape]} | ||
max_workspace_size = get_GiB(workspace_size) | ||
trt_engine = onnx2trt( | ||
onnx_file, | ||
opt_shape_dict, | ||
log_level=trt.Logger.VERBOSE if verbose else trt.Logger.ERROR, | ||
fp16_mode=fp16, | ||
max_workspace_size=max_workspace_size) | ||
save_dir, _ = osp.split(trt_file) | ||
if save_dir: | ||
os.makedirs(save_dir, exist_ok=True) | ||
save_trt_engine(trt_engine, trt_file) | ||
print(f'Successfully created TensorRT engine: {trt_file}') | ||
|
||
if verify: | ||
inputs = _prepare_input_img( | ||
input_config['input_path'], | ||
config.data.test.pipeline, | ||
shape=min_shape[2:]) | ||
|
||
imgs = inputs['imgs'] | ||
img_metas = inputs['img_metas'] | ||
img_list = [img[None, :] for img in imgs] | ||
img_meta_list = [[img_meta] for img_meta in img_metas] | ||
# update img_meta | ||
img_list, img_meta_list = _update_input_img(img_list, img_meta_list) | ||
|
||
if max_shape[0] > 1: | ||
# concate flip image for batch test | ||
flip_img_list = [_.flip(-1) for _ in img_list] | ||
img_list = [ | ||
torch.cat((ori_img, flip_img), 0) | ||
for ori_img, flip_img in zip(img_list, flip_img_list) | ||
] | ||
|
||
# Get results from ONNXRuntime | ||
ort_custom_op_path = get_onnxruntime_op_path() | ||
session_options = ort.SessionOptions() | ||
if osp.exists(ort_custom_op_path): | ||
session_options.register_custom_ops_library(ort_custom_op_path) | ||
sess = ort.InferenceSession(onnx_file, session_options) | ||
sess.set_providers(['CPUExecutionProvider'], [{}]) # use cpu mode | ||
onnx_output = sess.run(['output'], | ||
{'input': img_list[0].detach().numpy()})[0][0] | ||
|
||
# Get results from TensorRT | ||
trt_model = TRTWraper(trt_file, ['input'], ['output']) | ||
with torch.no_grad(): | ||
trt_outputs = trt_model({'input': img_list[0].contiguous().cuda()}) | ||
trt_output = trt_outputs['output'][0].cpu().detach().numpy() | ||
|
||
if show: | ||
dataset = DATASETS.get(dataset) | ||
assert dataset is not None | ||
palette = dataset.PALETTE | ||
|
||
show_result_pyplot( | ||
input_config['input_path'], | ||
(onnx_output[0].astype(np.uint8), ), | ||
palette=palette, | ||
title='ONNXRuntime', | ||
block=False) | ||
show_result_pyplot( | ||
input_config['input_path'], (trt_output[0].astype(np.uint8), ), | ||
palette=palette, | ||
title='TensorRT') | ||
|
||
np.testing.assert_allclose( | ||
onnx_output, trt_output, rtol=1e-03, atol=1e-05) | ||
print('TensorRT and ONNXRuntime output all close.') | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Convert MMSegmentation models from ONNX to TensorRT') | ||
parser.add_argument('config', help='Config file of the model') | ||
parser.add_argument('model', help='Path to the input ONNX model') | ||
parser.add_argument( | ||
'--trt-file', type=str, help='Path to the output TensorRT engine') | ||
parser.add_argument( | ||
'--max-shape', | ||
type=int, | ||
nargs=4, | ||
default=[1, 3, 400, 600], | ||
help='Maximum shape of model input.') | ||
parser.add_argument( | ||
'--min-shape', | ||
type=int, | ||
nargs=4, | ||
default=[1, 3, 400, 600], | ||
help='Minimum shape of model input.') | ||
parser.add_argument('--fp16', action='store_true', help='Enable fp16 mode') | ||
parser.add_argument( | ||
'--workspace-size', | ||
type=int, | ||
default=1, | ||
help='Max workspace size in GiB') | ||
parser.add_argument( | ||
'--input-img', type=str, default='', help='Image for test') | ||
parser.add_argument( | ||
'--show', action='store_true', help='Whether to show output results') | ||
parser.add_argument( | ||
'--dataset', | ||
type=str, | ||
default='CityscapesDataset', | ||
help='Dataset name') | ||
parser.add_argument( | ||
'--verify', | ||
action='store_true', | ||
help='Verify the outputs of ONNXRuntime and TensorRT') | ||
parser.add_argument( | ||
'--verbose', | ||
action='store_true', | ||
help='Whether to verbose logging messages while creating \ | ||
TensorRT engine.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
assert is_tensorrt_plugin_loaded(), 'TensorRT plugin should be compiled.' | ||
args = parse_args() | ||
|
||
if not args.input_img: | ||
args.input_img = osp.join(osp.dirname(__file__), '../demo/demo.png') | ||
|
||
# check arguments | ||
assert osp.exists(args.config), 'Config {} not found.'.format(args.config) | ||
assert osp.exists(args.model), \ | ||
'ONNX model {} not found.'.format(args.model) | ||
assert args.workspace_size >= 0, 'Workspace size less than 0.' | ||
assert DATASETS.get(args.dataset) is not None, \ | ||
'Dataset {} does not found.'.format(args.dataset) | ||
for max_value, min_value in zip(args.max_shape, args.min_shape): | ||
assert max_value >= min_value, \ | ||
'max_shape sould be larger than min shape' | ||
|
||
input_config = { | ||
'min_shape': args.min_shape, | ||
'max_shape': args.max_shape, | ||
'input_path': args.input_img | ||
} | ||
|
||
cfg = mmcv.Config.fromfile(args.config) | ||
onnx2tensorrt( | ||
args.model, | ||
args.trt_file, | ||
cfg, | ||
input_config, | ||
fp16=args.fp16, | ||
verify=args.verify, | ||
show=args.show, | ||
dataset=args.dataset, | ||
workspace_size=args.workspace_size, | ||
verbose=args.verbose) |