Skip to content

brchung2/TPC-LoS-prediction

Repository files navigation

Repository for DLH Replication Project:

Citation to the original paper: Rocheteau, E., Lio`, P. & Hyland, S. Temporal point- wise convolutional networks for length of stay pre- diction in the intensive care unit. In Proceedings of the Conference on Health, Inference, and Learning, 58–68 (2021). https://arxiv.org/abs/2007.09483

Link to the original paper’s repo (if applicable): https://github.com/EmmaRocheteau/TPC-LoS-prediction

Dependencies: Package Dependencies in: requirements.txt

Data download instruction: Need credentialed access to eICU dataset.

  1. To run the sql files, set up eICU database: https://physionet.org/content/eicu-crd/2.0/.

  2. Follow the instructions: https://eicu-crd.mit.edu/tutorials/install_eicu_locally/ to ensure the correct connection configuration.

Preprocessing code + command (if applicable):

Preprocessing code in : eICU_preprocessing/create_all_tables.sql.

Commands:

  1. Clone this repository

  2. Replace the eICU_path in paths.json to a convenient location in your computer, and do the same for eICU_preprocessing/create_all_tables.sql using find and replace for '/content/drive/MyDrive/eICU_data/'. Leave the extra '/' at the end.

  3. In your terminal, navigate to the project directory, then type the following commands:

    psql 'dbname=eicu user=eicu options=--search_path=eicu'
    

    Inside the psql console:

    \i eICU_preprocessing/create_all_tables.sql
    

    This step might take a couple of hours.

    To quit the psql console:

    \q
    
  4. Then run the pre-processing scripts in your terminal. This may take a couple hours:

    python3 -m eICU_preprocessing.run_all_preprocessing
    

Training and Evaluation code + command (if applicable):

Training and Evaluation code for each model listed separately: eg models/run_tpc.py to run the TPC model; models/run_lstm.py to run the LSTM model.

  1. Set the working directory to the TPC-LoS-prediction, and run the following command:

Specify command line arguments to hyperparameter values:

```

python3 -m models.run_tpc --dataset eICU --task LoS --model_type tpc --percentage_data 10  #TPC model
python3 -m models.run_LSTM --dataset eICU --task LoS --model_type lstm --percentage_data 10 #LSTM model
python3 -m models.run_transformer --dataset eICU --task LoS --model_type transformer --percentage_data 10 #Transformer model  

```
  1. Run this script to run experiments:

    python3 -m models.hyperparameter_scripts.eICU.hyperparameter_tuning_exp 
    

Pretrained model (if applicable):

Table of results (no need to include additional experiments, but main reproducibility result should be included)

Presentation slides: https://docs.google.com/presentation/d/1-GQfAKFpgfdcnkTdKmeyAoaGeWNCnBUxEgQbWf3nc6I/edit#slide=id.g222d1ba3356_0_134

Performance for each model on 10% data and the improvement range % of the TPC model over the best baseline. Bolded metric numbers show the best model is TPC for each metric.

image

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published