Skip to content

Releases: brokensound77/detection-rules

ML-experimental-detections-20200506-3

06 May 22:40
7040538
Compare
Choose a tag to compare

Experimental rules: 0
Experimental ML jobs: 1
Other files: 1


DGA release:
date: 2021-05-06T22:40:00Z
For details reference: https://github.com/elastic/detection-rules/blob/main/docs/ML_DGA.md

ML-experimental-detections-20210804-6

05 Aug 05:50
7040538
Compare
Choose a tag to compare
Pre-release

changelog

detections added

URL Spoofing

  • Experimental Rules
    • 47b1a804-4f65-40b0-a7ef-fdac3c00b00c: Added new rule for url_spoofing.prediction: phishing (model prediction) or abuseurl_label: 1 (threat intelligence enrichment)

Registry of experimental detections

Experimental detections

expand to view
  • rules and dashboards can be imported via Kibana
  • jobs and datafeeds can be imported using the CLI or Kibana devtools

Refer to the experimental-maching-learning docs for more details

detection ID type relative path
47b1a804-4f65-40b0-a7ef-fdac3c00b00c rule url_spoof/rule/url_spoof_ml_predicted_malicious_url.ndjson
problem_child_high_sum_by_parent anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_parent.json
problem_child_high_sum_by_user anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_user.json
problem_child_rare_process_by_parent anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_parent.json
problem_child_rare_process_by_user anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_user.json
problem_child_high_sum_by_host anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_host.json
problem_child_rare_process_by_host anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_host.json
problem_child_high_sum_by_parent datafeed problem_child/datafeed/problem_child_high_sum_by_parent.json
problem_child_high_sum_by_user datafeed problem_child/datafeed/problem_child_high_sum_by_user.json
problem_child_rare_process_by_parent datafeed problem_child/datafeed/problem_child_rare_process_by_parent.json
problem_child_rare_process_by_user datafeed problem_child/datafeed/problem_child_rare_process_by_user.json
problem_child_high_sum_by_host datafeed problem_child/datafeed/problem_child_high_sum_by_host.json
problem_child_rare_process_by_host datafeed problem_child/datafeed/problem_child_rare_process_by_host.json
9a2e372a-cbeb-4ad6-a288-017ef086324c rule problem_child/rule/problem_child_ml_high_probability_suspicious_windows_event.ndjson
a5cb4cd7-ba05-47e8-a815-f95c21719ded rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_user.ndjson
9b98d945-2cce-45e5-aa84-4b021af0e153 rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_parent.ndjson
ff590871-371b-468f-8cd8-2876b54c53bd rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_user.ndjson
ae7c2f69-0c51-4b02-ad54-d3d75023da8b rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_parent.ndjson
34184d4e-ef61-477b-8d76-5c93448c29bf rule problem_child/rule/problem_child_ml_predicted_suspicious_windows_event.ndjson
415d6863-7676-401f-aa8d-62f59a28e849 rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_host.ndjson
86d57ec4-ace5-4456-8145-02e6f0cdd71a rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_host.ndjson
dga_high_sum_probability anomaly_detection dga/anomaly_detection/dga_high_sum_probability.json
dga_high_sum_probability datafeed dga/datafeed/dga_high_sum_probability.json
997ec71d-bddc-4513-b6f1-193f601fd420 rule dga/rule/dga_command_and_control_high_sum_scores.ndjson
170b35d4-d944-4264-a8ca-3118ae2e1534 rule dga/rule/dga_command_and_control_ml_sunburst_domain.ndjson
64116bb2-0f2c-4cf6-9df4-9973452b4d4b rule dga/rule/dga_command_and_control_ml_predicted_domain.ndjson
a020dadb-3da2-4252-91e9-b0fc148823e2 rule dga/rule/dga_command_and_control_ml_probable_domain.ndjson
None dashboard dga/dashboard/dga_dashboard.ndjson

ML-experimental-detections-20210603-5

03 Jun 19:13
7040538
Compare
Choose a tag to compare
Pre-release

changelog

detections updated

problem child

  • ML jobs
    • problem_child_high_sum_by_parent: Added an additional detector to detect anomalies on high_sum of blocklist_label
    • problem_child_high_sum_by_host: Added an additional detector to detect anomalies on high_sum of blocklist_label
    • problem_child_high_sum_by_user: Added an additional detector to detect anomalies on high_sum of blocklist_label
  • Experimental Rules
    • 34184d4e-ef61-477b-8d76-5c93448c29bf: Added a check for blocklist_label:1
    • 9a2e372a-cbeb-4ad6-a288-017ef086324c: Added a check for blocklist_label:1

Registry of experimental detections

Experimental detections

expand to view
  • rules and dashboards can be imported via Kibana
  • jobs and datafeeds can be imported using the CLI or Kibana devtools

Refer to the experimental-maching-learning docs for more details

detection ID type relative path
problem_child_high_sum_by_parent anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_parent.json
problem_child_high_sum_by_user anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_user.json
problem_child_rare_process_by_parent anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_parent.json
problem_child_rare_process_by_user anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_user.json
problem_child_high_sum_by_host anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_host.json
problem_child_rare_process_by_host anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_host.json
problem_child_high_sum_by_parent datafeed problem_child/datafeed/problem_child_high_sum_by_parent.json
problem_child_high_sum_by_user datafeed problem_child/datafeed/problem_child_high_sum_by_user.json
problem_child_rare_process_by_parent datafeed problem_child/datafeed/problem_child_rare_process_by_parent.json
problem_child_rare_process_by_user datafeed problem_child/datafeed/problem_child_rare_process_by_user.json
problem_child_high_sum_by_host datafeed problem_child/datafeed/problem_child_high_sum_by_host.json
problem_child_rare_process_by_host datafeed problem_child/datafeed/problem_child_rare_process_by_host.json
9a2e372a-cbeb-4ad6-a288-017ef086324c rule problem_child/rule/problem_child_ml_high_probability_suspicious_windows_event.ndjson
a5cb4cd7-ba05-47e8-a815-f95c21719ded rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_user.ndjson
9b98d945-2cce-45e5-aa84-4b021af0e153 rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_parent.ndjson
ff590871-371b-468f-8cd8-2876b54c53bd rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_user.ndjson
ae7c2f69-0c51-4b02-ad54-d3d75023da8b rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_parent.ndjson
34184d4e-ef61-477b-8d76-5c93448c29bf rule problem_child/rule/problem_child_ml_predicted_suspicious_windows_event.ndjson
415d6863-7676-401f-aa8d-62f59a28e849 rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_host.ndjson
86d57ec4-ace5-4456-8145-02e6f0cdd71a rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_host.ndjson
dga_high_sum_probability anomaly_detection dga/anomaly_detection/dga_high_sum_probability.json
dga_high_sum_probability datafeed dga/datafeed/dga_high_sum_probability.json
997ec71d-bddc-4513-b6f1-193f601fd420 rule dga/rule/dga_command_and_control_high_sum_scores.ndjson
170b35d4-d944-4264-a8ca-3118ae2e1534 rule dga/rule/dga_command_and_control_ml_sunburst_domain.ndjson
64116bb2-0f2c-4cf6-9df4-9973452b4d4b rule dga/rule/dga_command_and_control_ml_predicted_domain.ndjson
a020dadb-3da2-4252-91e9-b0fc148823e2 rule dga/rule/dga_command_and_control_ml_probable_domain.ndjson
None dashboard dga/dashboard/dga_dashboard.ndjson

ML-experimental-detections-20210602-4

03 Jun 01:27
7040538
Compare
Choose a tag to compare
Pre-release

changelog

Rules are now stored as ndjson files rather than in toml format, to allow for importing via Kibana

detections added

problem child

  • ML jobs
    • problem_child_high_sum_by_parent
    • problem_child_high_sum_by_host
    • problem_child_high_sum_by_user
    • problem_child_rare_process_by_parent
    • problem_child_rare_process_by_host
    • problem_child_rare_process_by_user
  • Experimental Rules
    • 34184d4e-ef61-477b-8d76-5c93448c29bf: Search rule to detect on malicious activity predicted by the supervised ProblemChild model
    • 9a2e372a-cbeb-4ad6-a288-017ef086324c: Search rule to detect on malicious activity predicted by the supervised ProblemChild model with high probability
    • 9b98d945-2cce-45e5-aa84-4b021af0e153: ML rule to detect on malicious parent-child activity identified by an ML job
    • 86d57ec4-ace5-4456-8145-02e6f0cdd71a: ML rule to detect on malicious process activity from a particular host, identified by an ML job
    • ff590871-371b-468f-8cd8-2876b54c53bd: ML rule to detect on malicious process activity from a particular user, identified by an ML job
    • ae7c2f69-0c51-4b02-ad54-d3d75023da8b: ML rule to detect a rare process spawned by a parent process, identified by an ML job
    • 415d6863-7676-401f-aa8d-62f59a28e849: ML rule to detect a rare process spawned on a host, identified by an ML job
    • a5cb4cd7-ba05-47e8-a815-f95c21719ded: ML rule to detect a rare process spawned on a user, identified by an ML job

DGA

Updated file names and job ID references


Registry of experimental detections

Experimental detections

expand to view
  • rules and dashboards can be imported via Kibana
  • jobs and datafeeds can be imported using the CLI or Kibana devtools

Refer to the experimental-maching-learning docs for more details

detection ID type relative path
problem_child_high_sum_by_parent anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_parent.json
problem_child_high_sum_by_user anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_user.json
problem_child_rare_process_by_parent anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_parent.json
problem_child_rare_process_by_user anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_user.json
problem_child_high_sum_by_host anomaly_detection problem_child/anomaly_detection/problem_child_high_sum_by_host.json
problem_child_rare_process_by_host anomaly_detection problem_child/anomaly_detection/problem_child_rare_process_by_host.json
problem_child_high_sum_by_parent datafeed problem_child/datafeed/problem_child_high_sum_by_parent.json
problem_child_high_sum_by_user datafeed problem_child/datafeed/problem_child_high_sum_by_user.json
problem_child_rare_process_by_parent datafeed problem_child/datafeed/problem_child_rare_process_by_parent.json
problem_child_rare_process_by_user datafeed problem_child/datafeed/problem_child_rare_process_by_user.json
problem_child_high_sum_by_host datafeed problem_child/datafeed/problem_child_high_sum_by_host.json
problem_child_rare_process_by_host datafeed problem_child/datafeed/problem_child_rare_process_by_host.json
9a2e372a-cbeb-4ad6-a288-017ef086324c rule problem_child/rule/problem_child_ml_high_probability_suspicious_windows_event.ndjson
a5cb4cd7-ba05-47e8-a815-f95c21719ded rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_user.ndjson
9b98d945-2cce-45e5-aa84-4b021af0e153 rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_parent.ndjson
ff590871-371b-468f-8cd8-2876b54c53bd rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_user.ndjson
ae7c2f69-0c51-4b02-ad54-d3d75023da8b rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_parent.ndjson
34184d4e-ef61-477b-8d76-5c93448c29bf rule problem_child/rule/problem_child_ml_predicted_suspicious_windows_event.ndjson
415d6863-7676-401f-aa8d-62f59a28e849 rule problem_child/rule/problem_child_ml_rare_suspicious_process_by_host.ndjson
86d57ec4-ace5-4456-8145-02e6f0cdd71a rule problem_child/rule/problem_child_ml_suspicious_process_cluster_by_host.ndjson
dga_high_sum_probability anomaly_detection dga/anomaly_detection/dga_high_sum_probability.json
dga_high_sum_probability datafeed dga/datafeed/dga_high_sum_probability.json
997ec71d-bddc-4513-b6f1-193f601fd420 rule dga/rule/dga_command_and_control_high_sum_scores.ndjson
170b35d4-d944-4264-a8ca-3118ae2e1534 rule dga/rule/dga_command_and_control_ml_sunburst_domain.ndjson
64116bb2-0f2c-4cf6-9df4-9973452b4d4b rule dga/rule/dga_command_and_control_ml_predicted_domain.ndjson
a020dadb-3da2-4252-91e9-b0fc148823e2 rule dga/rule/dga_command_and_control_ml_probable_domain.ndjson
None dashboard dga/dashboard/dga_dashboard.ndjson

ML-URLSpoof-20210804-1

05 Aug 05:49
7040538
Compare
Choose a tag to compare
Pre-release

model name: urlspoof_20210803_1.0
sha256: 4cbd8d82d382864d28147c5f80ac86108e774319bbe5d2c4c9f3c68d9f86e01e
for details, reference: https://github.com/elastic/detection-rules/tree/main/docs/experimental-machine-learning


changelog

This is the first release package for URL Spoofing. It consists of the following:

  • Feature Extraction Scripts:

    • ml_urlspoof_char_continuity_script.json: Calculate the continuity of different parts of a the domain (i.e. number of consecutive characters before seeing a number)
    • ml_urlspoof_domain_entropy_script.json: Calculate the entropy of the URL domain
    • ml_urlspoof_keyword_extractor_script.json: Extract keywords of interest from certain features
    • ml_urlspoof_ngrams_extractor_script.json: Extract ngrams from certain features
    • ml_urlspoof_remove_features_script.json: Remove extra fields created for prediction purposes to avoid cluttering incoming documents - this will NOT remove any of your original fields in your documents
    • ml_urlspoof_tld_keyword_extractor_script.json: Extract top level domain related keywords of interest from certain features
  • Model:

    • ml_urlspoof_model.json: Supervised model to classify URLs as malicious vs benign
  • Inference Pipeline:

    • ml_urlspoof_inference_pipeline.json: Inference pipeline to make predictions on URLs using the URL Spoofing model and threat intelligence enrichments
  • Training Pipeline:

    • ml_urlspoof_features_pipeline.json: Training pipeline used to train the URL Spoofing model - this is primarily for analysts looking for a starting point to train their own model

ML-ProblemChild-20210602-1

02 Jun 21:21
7040538
Compare
Choose a tag to compare
Pre-release

model name: problemchild_20210526_1.0
sha256: 4f4342b8559886f93702f571cdd320da7a176a28b2784a9d8c4497eeeca9b3bd
for details, reference: https://github.com/elastic/detection-rules/blob/main/docs/ML_DGA.md


Changelog

This is the first release package for ProblemChild. It consists of the following:

  • Feature extraction scripts:

    • ML_ProblemChild_features_script.json: Extract required features irrespective of agent being used
    • ML_ProblemChild_normalize_ppath_script.json: Extract a normalized path feature
    • ML_ProblemChild_ngram_extractor_script.json: Extract ngrams from certain features
  • Model:

    • ML_ProblemChild_model.json: Supervised model to classify incoming events as malicious vs benign
  • Blocklist script:

    • ML_ProblemChild_blocklist_script.json: Blocklist script to override model verdict
  • Inference pipeline:

    • ML_ProblemChild_inference_pipeline.json: Inference pipeline to make predictions on events using the ProblemChild model/blocklist
  • Ingest pipeline:

    • ML_ProblemChild_ingest_pipeline.json: Ingest pipeline to run ML_ProblemChild_inference_pipeline only on Windows process events

ML-HostRiskScore-20210728-1

28 Jul 18:56
7040538
Compare
Choose a tag to compare
Pre-release

for details, reference: https://github.com/elastic/detection-rules/tree/main/docs/experimental-machine-learning


Changelog

This is the first release package for Host Risk Score. It consists of the following:

  • Scripts, ingest pipelines and transforms used to calculate and update risk score across all hosts in your environment
  • dashboards.ndjson contains all the assets required for two dashboards- "Current Risky Hosts", which shows the Top 20 currently suspicious hosts in your environment and "Host Risk Drilldown" which shows a more detailed breakdown of various types of activity taking place on hosts in your environment

ML-DGA-20210629-5

29 Jun 17:00
7040538
Compare
Choose a tag to compare
ML-DGA-20210629-5 Pre-release
Pre-release

model name: dga_1611725_2.0
sha256: 29748b8ce3b3aed528079044ab0af881477beeb86c904bc939ea04a7f087b046
for details, reference: https://github.com/elastic/detection-rules/tree/main/docs/experimental-machine-learning


changelog

  • casing for all files changed to lowercase

ML-DGA-20210604-4

04 Jun 19:44
7040538
Compare
Choose a tag to compare
ML-DGA-20210604-4 Pre-release
Pre-release

model name: dga_1611725_2.0
sha256: 29748b8ce3b3aed528079044ab0af881477beeb86c904bc939ea04a7f087b046
for details, reference: https://github.com/elastic/detection-rules/tree/main/docs/experimental-machine-learning


changelog

  • fix the reference to the inference pipeline name to accurately reflect the name change to ML_DGA_inference_pipeline

ML-DGA-20210602-3

02 Jun 21:20
7040538
Compare
Choose a tag to compare
ML-DGA-20210602-3 Pre-release
Pre-release

model name: dga_1611725_2.0
sha256: 29748b8ce3b3aed528079044ab0af881477beeb86c904bc939ea04a7f087b046
for details, reference: https://github.com/elastic/detection-rules/blob/main/docs/ML_DGA.md


changelog

No changes to model or functionality, just to filenames and references to script IDs to be compatible with updates in
the CLI.

Note: previous release will no longer work with the changes
to the CLI. To use these previous DGA releases, use the CLI from the 7.12 branch