Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

multi: introduce v2transport and implement BIP324 #2260

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
392 changes: 392 additions & 0 deletions btcec/ellswift.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,392 @@
package btcec

import (
"crypto/rand"
"fmt"

"github.com/btcsuite/btcd/chaincfg/chainhash"
)

var (
// c is sqrt(-3) (mod p)
c FieldVal

cBytes = [32]byte{
0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf,
0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c,
0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4,
0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x52,
}

ellswiftTag = []byte("bip324_ellswift_xonly_ecdh")

// ErrPointNotOnCurve is returned when we're unable to find a point on the
// curve.
ErrPointNotOnCurve = fmt.Errorf("point does not exist on secp256k1 curve")
)

func init() {
c.SetByteSlice(cBytes[:])
}

// XSwiftEC() takes two field elements (u, t) and gives us an x-coordinate that
// is on the secp256k1 curve. This is used to take an ElligatorSwift-encoded
// public key (u, t) and return the point on the curve it maps to.
// TODO: Rewrite these so to avoid new(FieldVal).Add(...) usage?
// NOTE: u, t MUST be normalized. The result x is normalized.
func XSwiftEC(u, t *FieldVal) *FieldVal {
// 1. Let u' = u if u != 0, else = 1
if u.IsZero() {
u.SetInt(1)
}

// 2. Let t' = t if t != 0, else 1
if t.IsZero() {
t.SetInt(1)
}

// 3. Let t'' = t' if g(u') != -(t'^2); t'' = 2t' otherwise
// g(x) = x^3 + ax + b, a = 0, b = 7

// Calculate g(u').
gu := new(FieldVal).SquareVal(u).Mul(u).AddInt(7).Normalize()

// Calculate the right-hand side of the equation (-t'^2)
rhs := new(FieldVal).SquareVal(t).Negate(1).Normalize()

if gu.Equals(rhs) {
// t'' = 2t'
t = t.Add(t)
}

// 4. X = (u'^3 + b - t''^2) / (2t'')
tSquared := new(FieldVal).SquareVal(t).Negate(1)
xNum := new(FieldVal).SquareVal(u).Mul(u).AddInt(7).Add(tSquared)
xDenom := new(FieldVal).Add2(t, t).Inverse()
x := xNum.Mul(xDenom)

// 5. Y = (X+t'') / (u' * c)
yNum := new(FieldVal).Add2(x, t)
yDenom := new(FieldVal).Mul2(u, &c).Inverse()
y := yNum.Mul(yDenom)

// 6. Return the first x in (u'+4Y^2, -X/2Y - u'/2, X/2Y - u'/2) for which
// x^3 + b is square.

// 6a. Calculate u' +4Y^2 and determine if x^3+7 is square.
ySqr := new(FieldVal).Add(y).Mul(y)
quadYSqr := new(FieldVal).Add(ySqr).MulInt(4)
firstX := new(FieldVal).Add(u).Add(quadYSqr)

firstXCurve := new(FieldVal).Add(firstX).Square().Mul(firstX).AddInt(7)

// Now determine if firstXCurve is square (on the curve).
if new(FieldVal).SquareRootVal(firstXCurve) {
return firstX.Normalize()
}

// 6b. Calculate -X/2Y - u'/2 and determine if x^3 + 7 is square
doubleYInv := new(FieldVal).Add(y).Add(y).Inverse()
xDivDoubleYInv := new(FieldVal).Add(x).Mul(doubleYInv)
negXDivDoubleYInv := new(FieldVal).Add(xDivDoubleYInv).Negate(1)
invTwo := new(FieldVal).AddInt(2).Inverse()
negUDivTwo := new(FieldVal).Add(u).Mul(invTwo).Negate(1)
secondX := new(FieldVal).Add(negXDivDoubleYInv).Add(negUDivTwo)

secondXCurve := new(FieldVal).Add(secondX).Square().Mul(secondX).AddInt(7)

// Now determine if secondXCurve is square.
if new(FieldVal).SquareRootVal(secondXCurve) {
return secondX.Normalize()
}

// 6c. Calculate X/2Y -u'/2 and determine if x^3 + 7 is square
thirdX := new(FieldVal).Add(xDivDoubleYInv).Add(negUDivTwo)

thirdXCurve := new(FieldVal).Add(thirdX).Square().Mul(thirdX).AddInt(7)

// Now determine if thirdXCurve is square.
if new(FieldVal).SquareRootVal(thirdXCurve) {
return thirdX.Normalize()
}

// Should have found a square above.
panic("unreachable - no calculated x-values were square")
}

// XSwiftECInv takes two field elements (u, x) (where x is on the curve) and
// returns a field element t. This is used to take a random field element u and
// a point on the curve and return a field element t where (u, t) forms the
// ElligatorSwift encoding.
// TODO: Rewrite these so to avoid new(FieldVal).Add(...) usage?
// NOTE: u, x MUST be normalized. The result `t` is normalized.
func XSwiftECInv(u, x *FieldVal, caseNum int) *FieldVal {
v := new(FieldVal)
s := new(FieldVal)
twoInv := new(FieldVal).AddInt(2).Inverse()

if caseNum&2 == 0 {
// If lift_x(-x-u) succeeds, return None
if _, found := liftX(new(FieldVal).Add(x).Add(u).Negate(2)); found {
return nil
}

// Let v = x
v.Add(x)

// Let s = -(u^3+7)/(u^2 + uv + v^2)
uSqr := new(FieldVal).Add(u).Square()
vSqr := new(FieldVal).Add(v).Square()
sDenom := new(FieldVal).Add(u).Mul(v).Add(uSqr).Add(vSqr)
sNum := new(FieldVal).Add(uSqr).Mul(u).AddInt(7)

s = sDenom.Inverse().Mul(sNum).Negate(1)
} else {
// Let s = x - u
negU := new(FieldVal).Add(u).Negate(1)
s.Add(x).Add(negU).Normalize()

// If s = 0, return None
if s.IsZero() {
return nil
}

// Let r be the square root of -s(4(u^3 + 7) + 3u^2s)
uSqr := new(FieldVal).Add(u).Square()
lhs := new(FieldVal).Add(uSqr).Mul(u).AddInt(7).MulInt(4)
rhs := new(FieldVal).Add(uSqr).MulInt(3).Mul(s)

// Add the two terms together and multiply by -s.
lhs.Add(rhs).Normalize().Mul(s).Negate(1)

r := new(FieldVal)
if !r.SquareRootVal(lhs) {
// If no square root was found, return None.
return nil
}

if caseNum&1 == 1 && r.Normalize().IsZero() {
// If case & 1 = 1 and r = 0, return None.
return nil
}

// Let v = (r/s - u)/2
sInv := new(FieldVal).Add(s).Inverse()
uNeg := new(FieldVal).Add(u).Negate(1)

v.Add(r).Mul(sInv).Add(uNeg).Mul(twoInv)
}

w := new(FieldVal)

if !w.SquareRootVal(s) {
// If no square root was found, return None.
return nil
}

switch caseNum & 5 {
case 0:
// If case & 5 = 0, return -w(u(1-c)/2 + v)
oneMinusC := new(FieldVal).Add(&c).Negate(1).AddInt(1)
t := new(FieldVal).Add(u).Mul(oneMinusC).Mul(twoInv).Add(v).Mul(w).
Negate(1).Normalize()

return t

case 1:
// If case & 5 = 1, return w(u(1+c)/2 + v)
onePlusC := new(FieldVal).Add(&c).AddInt(1)
t := new(FieldVal).Add(u).Mul(onePlusC).Mul(twoInv).Add(v).Mul(w).
Normalize()

return t

case 4:
// If case & 5 = 4, return w(u(1-c)/2 + v)
oneMinusC := new(FieldVal).Add(&c).Negate(1).AddInt(1)
t := new(FieldVal).Add(u).Mul(oneMinusC).Mul(twoInv).Add(v).Mul(w).
Normalize()

return t

case 5:
// If case & 5 = 5, return -w(u(1+c)/2 + v)
onePlusC := new(FieldVal).Add(&c).AddInt(1)
t := new(FieldVal).Add(u).Mul(onePlusC).Mul(twoInv).Add(v).Mul(w).
Negate(1).Normalize()

return t
}

panic("should not reach here")
}

// XElligatorSwift takes the x-coordinate of a point on secp256k1 and generates
// ElligatorSwift encoding of that point composed of two field elements (u, t).
// NOTE: x MUST be normalized. The return values u, t are normalized.
func XElligatorSwift(x *FieldVal) (*FieldVal, *FieldVal, error) {
// We'll choose a random `u` value and a random case so that we can
// generate a `t` value.
for {
// Choose random u value.
var randUBytes [32]byte
_, err := rand.Read(randUBytes[:])
if err != nil {
return nil, nil, err
}

u := new(FieldVal)
overflow := u.SetBytes(&randUBytes)
if overflow == 1 {
u.Normalize()
}

// Choose a random case in the interval [0, 7]
var randCaseByte [1]byte
_, err = rand.Read(randCaseByte[:])
if err != nil {
return nil, nil, err
}

caseNum := randCaseByte[0] & 7

// Find t, if none is found, continue with the loop.
t := XSwiftECInv(u, x, int(caseNum))
if t != nil {
return u, t, nil
}
}
}

// EllswiftCreate generates a random private key and returns that along with
// the ElligatorSwift encoding of its corresponding public key.
func EllswiftCreate() (*PrivateKey, [64]byte, error) {
var randPrivKeyBytes [64]byte

// Generate a random private key
_, err := rand.Read(randPrivKeyBytes[:])
if err != nil {
return nil, [64]byte{}, err
}

privKey, _ := PrivKeyFromBytes(randPrivKeyBytes[:])

// Fetch the x-coordinate of the public key.
x := getXCoord(privKey)

// Get the ElligatorSwift encoding of the public key.
u, t, err := XElligatorSwift(x)
if err != nil {
return nil, [64]byte{}, err
}

uBytes := u.Bytes()
tBytes := t.Bytes()

// ellswift_pub = bytes(u) || bytes(t), its encoding as 64 bytes
var ellswiftPub [64]byte
copy(ellswiftPub[0:32], (*uBytes)[:])
copy(ellswiftPub[32:64], (*tBytes)[:])

// Return (priv, ellswift_pub)
return privKey, ellswiftPub, nil
}

// EllswiftECDHXOnly takes the ElligatorSwift-encoded public key of a
// counter-party and performs ECDH with our private key.
func EllswiftECDHXOnly(ellswiftTheirs [64]byte, privKey *PrivateKey) ([32]byte,
error) {

// Let u = int(ellswift_theirs[:32]) mod p.
// Let t = int(ellswift_theirs[32:]) mod p.
uBytesTheirs := ellswiftTheirs[0:32]
tBytesTheirs := ellswiftTheirs[32:64]

var uTheirs FieldVal
overflow := uTheirs.SetByteSlice(uBytesTheirs[:])
if overflow {
uTheirs.Normalize()
}

var tTheirs FieldVal
overflow = tTheirs.SetByteSlice(tBytesTheirs[:])
if overflow {
tTheirs.Normalize()
}

// Calculate bytes(x(priv⋅lift_x(XSwiftEC(u, t))))
xTheirs := XSwiftEC(&uTheirs, &tTheirs)
pubKey, found := liftX(xTheirs)
if !found {
return [32]byte{}, ErrPointNotOnCurve
}

var pubJacobian JacobianPoint
pubKey.AsJacobian(&pubJacobian)

var sharedPoint JacobianPoint
ScalarMultNonConst(&privKey.Key, &pubJacobian, &sharedPoint)
sharedPoint.ToAffine()

return *sharedPoint.X.Bytes(), nil
}

// getXCoord fetches the corresponding public key's x-coordinate given a
// private key.
func getXCoord(privKey *PrivateKey) *FieldVal {
var result JacobianPoint
ScalarBaseMultNonConst(&privKey.Key, &result)
result.ToAffine()
return &result.X
}

// liftX returns the point P with x-coordinate `x` and even y-coordinate. If a
// point exists on the curve, it returns true and false otherwise.
// TODO: Use quadratic residue formula instead (see: BIP340)?
func liftX(x *FieldVal) (*PublicKey, bool) {
ySqr := new(FieldVal).Add(x).Square().Mul(x).AddInt(7)

y := new(FieldVal)
if !y.SquareRootVal(ySqr) {
// If we've reached here, the point does not exist on the curve.
return nil, false
}

if !y.Normalize().IsOdd() {
return NewPublicKey(x, y), true
}

// Negate y if it's odd.
if !y.Negate(1).Normalize().IsOdd() {
return NewPublicKey(x, y), true
}

return nil, false
}

// V2Ecdh performs x-only ecdh and returns a shared secret composed of a tagged
// hash which itself is composed of two ElligatorSwift-encoded public keys and
// the x-only ecdh point.
func V2Ecdh(priv *PrivateKey, ellswiftTheirs, ellswiftOurs [64]byte,
initiating bool) (*chainhash.Hash, error) {

ecdhPoint, err := EllswiftECDHXOnly(ellswiftTheirs, priv)
if err != nil {
return nil, err
}

if initiating {
// Initiating, place our public key encoding first.
var msg []byte
msg = append(msg, ellswiftOurs[:]...)
msg = append(msg, ellswiftTheirs[:]...)
msg = append(msg, ecdhPoint[:]...)
return chainhash.TaggedHash(ellswiftTag, msg), nil
}

var msg []byte
msg = append(msg, ellswiftTheirs[:]...)
msg = append(msg, ellswiftOurs[:]...)
msg = append(msg, ecdhPoint[:]...)
return chainhash.TaggedHash(ellswiftTag, msg), nil
}
Loading
Loading