Skip to content

Commit

Permalink
add east & sast
Browse files Browse the repository at this point in the history
  • Loading branch information
MissPenguin committed Dec 9, 2020
1 parent 8a5566c commit 021c113
Show file tree
Hide file tree
Showing 36 changed files with 3,798 additions and 103 deletions.
7 changes: 3 additions & 4 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
include LICENSE.txt
include README.md

recursive-include ppocr/utils *.txt utility.py character.py check.py
recursive-include ppocr/data/det *.py
recursive-include ppocr/utils *.txt utility.py logging.py
recursive-include ppocr/data/ *.py
recursive-include ppocr/postprocess *.py
recursive-include ppocr/postprocess/lanms *.*
recursive-include tools/infer *.py
recursive-include tools/infer *.py
111 changes: 111 additions & 0 deletions configs/det/det_mv3_east.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_mv3/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt

Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: EASTFPN
model_name: small
Head:
name: EASTHead
model_name: small

Loss:
name: EASTLoss

Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0

PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2

Metric:
name: DetMetric
main_indicator: hmean

Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8

Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
110 changes: 110 additions & 0 deletions configs/det/det_r50_vd_east.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_r50_vd/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt

Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: EASTFPN
model_name: large
Head:
name: EASTHead
model_name: large

Loss:
name: EASTLoss

Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0

PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2

Metric:
name: DetMetric
main_indicator: hmean

Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 8

Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
110 changes: 110 additions & 0 deletions configs/det/det_r50_vd_sast_icdar15.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
Global:
use_gpu: true
epoch_num: 5000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/sast_r50_vd_ic15/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/sast_r50_vd_ic15/predicts_sast.txt

Architecture:
model_type: det
algorithm: SAST
Transform:
Backbone:
name: ResNet_SAST
layers: 50
Neck:
name: SASTFPN
with_cab: True
Head:
name: SASTHead

Loss:
name: SASTLoss

Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0

PostProcess:
name: SASTPostProcess
score_thresh: 0.5
sample_pts_num: 2
nms_thresh: 0.2
expand_scale: 1.0
shrink_ratio_of_width: 0.3

Metric:
name: DetMetric
main_indicator: hmean

Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_path: [./train_data/art_latin_icdar_14pt/train_no_tt_test/train_label_json.txt, ./train_data/total_text_icdar_14pt/train_label_json.txt]
data_ratio_list: [0.5, 0.5]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- SASTProcessTrain:
image_shape: [512, 512]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
- KeepKeys:
keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 4

Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
resize_long: 1536
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
Loading

0 comments on commit 021c113

Please sign in to comment.