A Swiss army knife for async iterables. Designed to help replace your streams. These utilities have a comparable speed, friendlier error handling, and are easier to understand than most stream based workloads.
Streams were our last best hope for processing unbounded amounts of data. Now with Node 10 they have become something greater, they've become async iterable. With async iterators you can have less code, do more work, faster.
If you still need streams with async functions, check out sister project bluestream
🏄‍♀️!
There are no dependencies.
npm install streaming-iterables
We ship esm, umd and types.
Every function is curryable, you can call it with any number of arguments. For example:
import { map } from 'streaming-iterables'
for await (const str of map(String, [1,2,3])) {
console.log(str)
}
// "1", "2", "3"
const stringable = map(String)
for await (const str of stringable([1,2,3])) {
console.log(str)
}
// "1", "2", "3"
Since this works with async iterators it polyfills the symbol Symbol.asyncIterator
if it doesn't exist. (Not needed after node 10.)
if ((Symbol as any).asyncIterator === undefined) {
;(Symbol as any).asyncIterator = Symbol.for('asyncIterator')
}
batch()
buffer()
collect()
concat()
consume()
flatMap()
flatten()
flatTransform()
fromStream()
filter()
getIterator()
map()
merge()
parallelMap()
parallelMerge()
pipeline()
reduce()
take()
tap()
time()
transform()
writeToStream()
function batch<T>(size: number, iterable: AsyncIterable<T>): AsyncIterableIterator<T[]>
function batch<T>(size: number, iterable: Iterable<T>): IterableIterator<T[]>
Batch objects from iterable
into arrays of size
length. The final array may be shorter than size if there is not enough items. Returns a sync iterator if the iterable
is sync, otherwise an async iterator. Errors from the source iterable
are immediately raised.
size
can be betweeen 1 and Infinity
.
import { batch } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
// batch 10 pokemon while we process them
for await (const pokemons of batch(10, getPokemon())) {
console.log(pokemons) // 10 pokemon at a time!
}
function buffer<T>(size: number, iterable: AsyncIterable<T>): AsyncIterableIterator<T>
function buffer<T>(size: number, iterable: Iterable<T>): IterableIterator<T>
Buffer keeps a number of objects in reserve available for immediate reading. This is helpful with async iterators as it will prefetch results so you don't have to wait for them to load. For sync iterables it will precompute up to size
values and keep them in reserve. The internal buffer will start to be filled once .next()
is called for the first time and will continue to fill until the source iterable
is exhausted or the buffer is full. Errors from the source iterable
will be raised after all buffered values are yielded.
size
can be betweeen 1 and Infinity
.
import { buffer } from 'streaming-iterables'
import { getPokemon, trainMonster } from 'iterable-pokedex'
// load 10 monsters in the background while we process them one by one
for await (const monster of buffer(10, getPokemon())) {
await trainMonster(monster) // got to do some pokéwork
}
function collect<T>(iterable: Iterable<T>): T[]
function collect<T>(iterable: AsyncIterable<T>): Promise<T[]>
Collect all the values from an iterable into an array. Returns an array if you pass it an iterable and a promise for an array if you pass it an async iterable. Errors from the source iterable
are raised immediately.
import { collect } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
console.log(await collect(getPokemon()))
// [bulbasaur, ivysaur, venusaur, charmander, ...]
function concat(...iterables: Array<Iterable<any>>): IterableIterator<any>
function concat(...iterables: Array<AnyIterable<any>>): AsyncIterableIterator<any>
Combine multiple iterators into a single iterable. Reads each iterable completely one at a time. Returns a sync iterator if all iterables
are sync, otherwise it returns an async iterable. Errors from the source iterable
are raised immediately.
import { concat } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
import { getTransformers } from './util'
for await (const hero of concat(getPokemon(2), getTransformers(2))) {
console.log(hero)
}
// charmander
// bulbasaur <- end of pokemon
// megatron
// bumblebee <- end of transformers
export function consume<T>(iterable: Iterable<T>): void
export function consume<T>(iterable: AsyncIterable<T>): Promise<void>
A promise that resolves after the function drains the iterable of all data. Useful for processing a pipeline of data. Errors from the source iterable
are raised immediately.
import { consume, map } from 'streaming-iterables'
import { getPokemon, trainMonster } from 'iterable-pokedex'
const train = map(trainMonster)
await consume(train(getPokemon())) // load all the pokemon and train them!
function flatMap<T, B>(func: (data: T) => FlatMapValue<B>, iterable: AnyIterable<T>): AsyncIterableIterator<B>
Map func
over the iterable
, flatten the result and then ignore all null or undefined values. It's the transform function we've always needed. It's equivalent to;
(func, iterable) => filter(i => i !== undefined && i !== null, flatten(map(func, iterable)))
note: The return value for func
is FlatMapValue<B>
. Typescript doesn't have recursive types but you can nest iterables as deep as you like.
The ordering of the results is guaranteed. Errors from the source iterable
are raised after all mapped values are yielded. Errors from func
are raised after all previously mapped values are yielded.
import { flatMap } from 'streaming-iterables'
import { getPokemon, lookupStats } from 'iterable-pokedex'
async function getDefeatedGyms(pokemon) {
if (pokemon.gymBattlesWon > 0) {
const stats = await lookupStats(pokemon)
return stats.gyms
}
}
for await (const gym of flatMap(getDefeatedGyms, getPokemon())) {
console.log(gym.name)
}
// "Pewter Gym"
// "Cerulean Gym"
// "Vermilion Gym"
function flatten<B>(iterable: AnyIterable<B | AnyIterable<B>>): AsyncIterableIterator<B>
Returns a new iterator by pulling every item out of iterable
(and all its sub iterables) and yielding them depth-first. Checks for the iterable interfaces and iterates it if it exists. If the value is a string it is not iterated as that ends up in an infinite loop. Errors from the source iterable
are raised immediately.
note: Typescript doesn't have recursive types but you can nest iterables as deep as you like.
import { flatten } from 'streaming-iterables'
for await (const item of flatten([1, 2, [3, [4, 5], 6])) {
console.log(item)
}
// 1
// 2
// 3
// 4
// 5
// 6
function flatTransform<T, R>(concurrency: number, func: (data: T) => FlatMapValue<R>, iterable: AnyIterable<T>): AsyncIterableIterator<R>
Map func
over the iterable
, flatten the result and then ignore all null or undefined values. Returned async iterables are flattened concurrently too. It's the transform function we've always wanted.
It's similar to;
const filterEmpty = filter(i => i !== undefined && i !== null)
(concurrency, func, iterable) => filterEmpty(flatten(transform(concurrency, func, iterable)))
note: The return value for func
is FlatMapValue<B>
. Typescript doesn't have recursive types but you can nest iterables as deep as you like. However only directly returned async iterables are processed concurrently. (Eg, if you use an async generator function as func
it's output will be processed concurrently, but if it's nested inside other iterables it will be processed sequentially.)
Order is determined by when async operations resolve. And it will run up to concurrency
async operations at once. This includes promises and async iterables returned from func
. Errors from the source iterable
are raised after all transformed values are yielded. Errors from func
are raised after all previously transformed values are yielded.
concurrency
can be betweeen 1 and Infinity
.
Promise Example;
import { flatTransform } from 'streaming-iterables'
import { getPokemon, lookupStats } from 'iterable-pokedex'
async function getDefeatedGyms(pokemon) {
if (pokemon.gymBattlesWon > 0) {
const stats = await lookupStats(pokemon)
return stats.gyms
}
}
// lookup 10 stats at a time
for await (const gym of flatTransform(10, getDefeatedGyms, getPokemon())) {
console.log(gym.name)
}
// "Pewter Gym"
// "Cerulean Gym"
// "Vermilion Gym"
Async Generator Example
import { flatTransform } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
import { findFriendsFB, findFriendsMySpace } from './util'
async function* findFriends (pokemeon) {
yield await findFriendsFB(pokemon.name)
yield await findFriendsMySpace(pokemon.name)
}
for await (const pokemon of flatTransform(10, findFriends, getPokemon())) {
console.log(pokemon.name)
}
// Pikachu
// Meowth
// Ash - FB
// Jessie - FB
// Misty - MySpace
// James - MySpace
function fromStream<T>(stream: Readable): AsyncIterable<T>
If you are on a node before node 10, you will have to use fromStream
to turn the stream into an async iterator. If this function is used and the stream already has one, the one already present on the stream is used. This is recommended for backwards compatibility.
import { fromStream } from 'streaming-iterables'
import { createReadStream } from 'fs'
const pokeLog = fromStream(createReadStream('./pokedex-operating-system.log'))
for await (const pokeData of pokeLog) {
console.log(pokeData) // Buffer(...)
}
function filter<T>(filterFunc: (data: T) => boolean | Promise<boolean>, iterable: AnyIterable<T>): AsyncIterableIterator<T>
Takes a filterFunc
and a iterable
, and returns a new async iterator of the same type containing the members of the given iterable which cause the filterFunc
to return true.
import { filter } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
const filterWater = filter(pokemon => pokemon.types.include('Water'))
for await (const pokemon of filterWater(getPokemon())) {
console.log(pokemon)
}
// squirtle
// vaporeon
// magikarp
function getIterator<T>(values: Iterableish<T>): Iterator<T> | AsyncIterator<T>
Get the iterator from any iterable or just return an iterator itself.
function map<T, B>(func: (data: T) => B | Promise<B>, iterable: AnyIterable<T>): AsyncIterableIterator<B>
Map a function or async function over all the values of an iterable. Errors from the source iterable
and func
are raised immediately.
import { consume, map } from 'streaming-iterables'
import got from 'got'
const urls = ['https://http.cat/200', 'https://http.cat/201', 'https://http.cat/202']
const download = map(got)
// download one at a time
for await (page of download(urls)) {
console.log(page)
}
function merge(...iterables: Array<AnyIterable<any>>): AsyncIterableIterator<any>
Combine multiple iterators into a single iterable. Reads one item off each iterable in order repeatedly until they are all exhausted. If you care less about order and want them faster see parallelMerge()
.
function parallelMap<T, R>(concurrency: number, func: (data: T) => R | Promise<R>, iterable: AnyIterable<T>): AsyncIterableIterator<R>
Map a function or async function over all the values of an iterable and do them concurrently. Errors from the source iterable
are raised after all mapped values are yielded. Errors from func
are raised after all previously mapped values are yielded. Just like map()
.
concurrency
can be betweeen 1 and Infinity
.
If you don't care about order, see the faster transform()
function.
import { consume, map } from 'streaming-iterables'
import got from 'got'
const urls = ['https://http.cat/200', 'https://http.cat/201', 'https://http.cat/202']
const download = map(2, got)
// download two at a time
for await (page of download(urls)) {
console.log(page)
}
function parallelMerge<T>(...iterables: Array<AnyIterable<T>>): AsyncIterableIterator<T>
Combine multiple iterators into a single iterable. Reads one item off of every iterable and yields them as they resolve. This is useful for pulling items out of a collection of iterables as soon as they're available. Errors iterables
are raised immediately.
import { parallelMerge } from 'streaming-iterables'
import { getPokemon, getTransformer } from 'iterable-pokedex'
// pokemon are much faster to load btw
const heros = parallelMerge(getPokemon(), getTransformer())
for await (const hero of heros) {
console.log(hero)
}
// charmander
// bulbasaur
// megatron
// pikachu
// eevee
// bumblebee
// jazz
function pipeline(firstFn: Function, ...fns: Function[]): any;
Calls firstFn
and then every function in fns
with the result of the previous function. The final return is the result of the last function in fns
.
import { pipeline, map, collect } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
const getName = map(pokemon => pokemon.name)
// equivalent to `await collect(getName(getPokemon()))`
await pipeline(getPokemon, getName, collect)
// charmander
// bulbasaur
// MissingNo.
function reduce<T, B>(func: (acc: B, value: T) => B, start: B, iterable: AnyIterable<T>): Promise<B>
An async function that takes a reducer function, an initial value and .
Reduces an iterable to a value which is the accumulated result of running each value from the iterable thru func
, where each successive invocation is supplied the return value of the previous. Errors are immediate raised.
function take<T>(count: number, iterable: AsyncIterable<T>): AsyncIterableIterator<T>
function take<T>(count: number, iterable: Iterable<T>): IterableIterator<T>
Returns a new iterator that reads a specific number of items from iterable
. When used with generators it advances the generator, when used with arrays it gets a new iterator and starts from the beginning.
function tap<T>(func: (data: T) => any, iterable: AnyIterable<T>): AsyncIterableIterator<T>
Returns a new iterator that yields the data it consumes passing the data through to a function. If you provide an async function the iterator will wait for the promise to resolve before yielding the value. This is useful for logging, or processing information and passing it along.
function time<T>(config?: ITimeConfig, iterable: AsyncIterable<R>): AsyncIterableIterator<R>
function time<T>(config?: ITimeConfig, iterable: Iterable<R>): IterableIterator<R>
interface ITimeConfig {
progress?: (delta: [number, number], total: [number, number]) => any;
total?: (time: [number, number]) => any;
}
Returns a new iterator that yields the data it consumes and calls the progress
and total
callbacks with the hrtime
it took for iterable
to provide a value when .next()
was called on it. That is to say, the time returned is the time this iterator spent waiting for data, not the time it took to finish being read. The hrtime
tuple looks like [seconds, nanoseconds]
.
import { consume, transform, time } from 'streaming-iterables'
import got from 'got'
const urls = ['https://http.cat/200', 'https://http.cat/201', 'https://http.cat/202']
const download = transform(1000, got)
const timer = time({
total: total => console.log(`Spent ${total[0]} seconds and ${total[1]}ns downloading cats`),
})
// download all of these at the same time
for await (page of timer(download(urls))) {
console.log(page)
}
function transform<T, R>(concurrency: number, func: (data: T) => R | Promise<R>, iterable: AnyIterable<T>): AsyncIterableIterator<R>
Map a function or async function over all the values of an iterable. Order is determined by when func
resolves. And it will run up to concurrency
async func
operations at once. If you care about order see parallelMap()
. Errors from the source iterable
are raised after all transformed values are yielded. Errors from func
are raised after all previously transformed values are yielded.
concurrency
can be betweeen 1 and Infinity
.
import { consume, transform } from 'streaming-iterables'
import got from 'got'
const urls = ['https://http.cat/200', 'https://http.cat/201', 'https://http.cat/202']
const download = transform(1000, got)
// download all of these at the same time
for await (page of download(urls)) {
console.log(page)
}
function writeToStream(stream: Writable, iterable: AnyIterable<any>): Promise<void>
Writes the iterable
to the stream respecting the stream backpressure. Resolves when the iterable is exhausted, rejects if the stream errors during calls to write()
or if there are error
events during the write.
As it is when working with streams there are a few caveats;
- It is possible for the stream to error after
writeToStream()
has finished writing due to internal buffering and other concerns, so always handle errors on the stream as well. writeToStream()
doesn't close the stream likestream.pipe()
might. This is done so you can write to the stream multiple times. You can callstream.write(null)
or any stream specific end function if you are done with the stream.
import { pipeline, map, writeToStream } from 'streaming-iterables'
import { getPokemon } from 'iterable-pokedex'
import { createWriteStream } from 'fs'
const file = createWriteStream('pokemon.ndjson')
const serialize = map(pokemon => `${JSON.stringify(pokemon)}\n`)
await pipeline(getPokemon, serialize, writeToStream(file))
file.end() // close the stream
// now all the pokemon are written to the file!
type Iterableish<T> = Iterable<T> | Iterator<T> | AsyncIterable<T> | AsyncIterator<T>
Any iterable or iterator.
type AnyIterable<T> = Iterable<T> | AsyncIterable<T>
Literally any Iterable
(async or regular).
type FlatMapValue<B> = B | AnyIterable<B> | undefined | null | Promise<B | AnyIterable<B> | undefined | null>
A value, an array of that value, undefined, null or promises for any of them. Used in the flatMap
and flatTransform
functions as possible return values of the mapping function.
Writing docs and code is a lot of work! Thank you in advance for helping out.