Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add auto igemm for gpt, vit #408

Merged
merged 1 commit into from
Oct 24, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ def extract_gpt_weights(
eos_id=50256,
pad_id=50257,
max_step=50,
extra_decode_length=0,
):
# load var names
with open(os.path.join(os.path.dirname(model_dir), "config.json")) as f:
Expand Down Expand Up @@ -121,6 +122,9 @@ def extract_gpt_weights(
hdf5_file.create_dataset("model_conf/topp", data=topp, dtype="f4")
hdf5_file.create_dataset("model_conf/topk", data=topk, dtype="i4")
hdf5_file.create_dataset("model_conf/eos_id", data=eos_id, dtype="i4")
hdf5_file.create_dataset(
"model_conf/extra_decode_length", data=extra_decode_length, dtype="i4"
)

hdf5_file.close()
# read-in again to double check
Expand Down Expand Up @@ -150,6 +154,7 @@ def _print_pair(key, value):
eos_id = 50256
pad_id = 50257
max_step = 50
extra_decode_length = 0 # use positive length to avtivate it
extract_gpt_weights(
hdf5_path,
args.model,
Expand All @@ -159,4 +164,5 @@ def _print_pair(key, value):
eos_id=eos_id,
pad_id=pad_id,
max_step=max_step,
extra_decode_length=extra_decode_length,
)
4 changes: 3 additions & 1 deletion lightseq/csrc/kernels/includes/cublas_algo_map.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@
#define STRIDE 32
#define BORDER 512

static std::string DEFAULT_URL = "https://zenodo.org/record/7219754/files/";
static std::string DEFAULT_URL =
"http://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/lightseq/"
"igemm_configs/";
static std::string DEFAULT_DIR =
std::string(std::getenv("HOME")) + "/.lightseq/igemm_configs/";
static std::string IGEMM_T4_CONFIG = "igemm_T4.cfg";
Expand Down
4 changes: 3 additions & 1 deletion lightseq/inference/model/cublas_algo_map.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,9 @@ namespace cuda {
#define STRIDE 32
#define BORDER 512

static std::string DEFAULT_URL = "https://zenodo.org/record/7219754/files/";
static std::string DEFAULT_URL =
"http://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/lightseq/"
"igemm_configs/";
static std::string DEFAULT_DIR =
std::string(std::getenv("HOME")) + "/.lightseq/igemm_configs/";
static std::string IGEMM_T4_CONFIG = "igemm_T4.cfg";
Expand Down
9 changes: 4 additions & 5 deletions lightseq/inference/model/gpt_encoder.cc.cu
Original file line number Diff line number Diff line change
Expand Up @@ -248,15 +248,15 @@ int GptEncoder<OpType_>::run_one_sample(int batch_size, int batch_seq_len) {
ker_norm_layer_launcher<_DataType>(
_batch_token_num, _tw._hidden_size, _stream, _p_d_query,
_p_d_src_emb_wei[2], _p_d_src_emb_wei[3], _max_thread_per_block);
if (sample_one_token() == 0 || _batch_seq_len >= _tw._max_step) {
if (sample_one_token() == 0 || _batch_seq_len >= _batch_max_seq_len) {
CHECK_GPU_ERROR(cudaMemcpyAsync(_p_d_sample_id_buf, _p_d_sample_id,
_batch_token_num * sizeof(int),
cudaMemcpyDeviceToDevice, _stream));
CHECK_GPU_ERROR(cudaStreamSynchronize(_stream));
return _batch_seq_len;
}

while (_batch_seq_len < _tw._max_step) {
while (_batch_seq_len < _batch_max_seq_len) {
#ifdef DEBUG_RESULT
std::cout << "before sample:batch_size-" << _batch_size << " batch_seq_len-"
<< _batch_seq_len << std::endl;
Expand All @@ -282,14 +282,13 @@ int GptEncoder<OpType_>::run_one_sample(int batch_size, int batch_seq_len) {
ker_norm_layer_launcher<_DataType>(
_batch_size, _tw._hidden_size, _stream, _p_d_query, _p_d_src_emb_wei[2],
_p_d_src_emb_wei[3], _max_thread_per_block);

#ifdef DEBUG_RESULT
print_vec(_p_d_query, "_p_d_query before logits",
_batch_size * _tw._hidden_size - 10,
_batch_size * _tw._hidden_size);

if (sample_one_token_with_cache() == 0 || _batch_seq_len >= _tw._max_step)
break;
#else

bool unfinish = sample_one_token_with_cache();
if (!unfinish && !_is_benchmark) break;
#endif
Expand Down
133 changes: 91 additions & 42 deletions lightseq/inference/model/quant_gpt_encoder.cc.cu
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ QuantGptEncoder<OpType_>::QuantGptEncoder(
_h_sample_id(max_batch_size * tw._max_step, 0),
_h_unfinished(1),
_is_benchmark(false),
_algo_map(),
_sm_gt_eq_80(getSMVersion() >= 80 ? true : false) {
CHECK_GPU_ERROR(cublasLtCreate(&_cublas_lt_handle));
}
Expand Down Expand Up @@ -179,11 +180,13 @@ void QuantGptEncoder<OpType_>::init_buffer() {
_p_device_wei.push_back(
to_gpu(_p_d_enc_wei[_weight_offset + 11], _tw._hidden_size, _stream));

auto weight_layout = _sm_gt_eq_80 ? kColMajor : kColMajor32;

quantize_weight(_p_d_enc_wei[_weight_offset + 2],
_int8_p_d_enc_wei[_layer_id * 4], _tw._hidden_size,
_tw._hidden_size * 3,
_quant_range / _enc_clip_max[_layer_id * 12], _stream,
_cublas_lt_handle);
_cublas_lt_handle, weight_layout);

quantize_weight(_p_d_enc_wei[_weight_offset + 4],
_int8_p_d_enc_wei[_layer_id * 4 + 1], _tw._hidden_size,
Expand All @@ -195,7 +198,7 @@ void QuantGptEncoder<OpType_>::init_buffer() {
_int8_p_d_enc_wei[_layer_id * 4 + 2], _tw._hidden_size,
_tw._inner_size,
_quant_range / _enc_clip_max[_layer_id * 12 + 2], _stream,
_cublas_lt_handle);
_cublas_lt_handle, weight_layout);

quantize_weight(_p_d_enc_wei[_weight_offset + 10],
_int8_p_d_enc_wei[_layer_id * 4 + 3], _tw._inner_size,
Expand Down Expand Up @@ -306,6 +309,8 @@ int QuantGptEncoder<OpType_>::run_one_sample(int batch_size,
_batch_size = batch_size;
_batch_seq_len = batch_seq_len;
_batch_token_num = batch_size * batch_seq_len;
_batch_max_seq_len =
min(_tw._max_step, batch_seq_len + _tw._extra_decode_length);

CHECK_GPU_ERROR(cudaMemcpyAsync(_p_d_real_seq_len, _h_real_seq_len.data(),
sizeof(int) * _batch_size,
Expand Down Expand Up @@ -345,15 +350,15 @@ int QuantGptEncoder<OpType_>::run_one_sample(int batch_size,
_p_d_self_v_cache2 = _p_d_self_v_cache1;
_p_d_self_v_cache1 = ftmp;

if (sample_one_token() == 0 || _batch_seq_len >= _tw._max_step) {
if (sample_one_token() == 0 || _batch_seq_len >= _batch_max_seq_len) {
CHECK_GPU_ERROR(cudaMemcpyAsync(_p_d_sample_id_buf, _p_d_sample_id,
_batch_token_num * sizeof(int),
cudaMemcpyDeviceToDevice, _stream));
CHECK_GPU_ERROR(cudaStreamSynchronize(_stream));
return _batch_seq_len;
}

while (_batch_seq_len < _tw._max_step) {
while (_batch_seq_len < _batch_max_seq_len) {
#ifdef DEBUG_RESULT
std::cout << "before sample:batch_size-" << _batch_size << " batch_seq_len-"
<< _batch_seq_len << std::endl;
Expand Down Expand Up @@ -485,16 +490,25 @@ void QuantGptEncoder<OpType_>::self_attention() {
_int8_ffn_in_buf, _p_device_wei[_weight_offset],
_p_device_wei[_weight_offset + 1], _p_device_wei[_weight_offset + 5],
_max_thread_per_block, _quant_range / _enc_clip_max[_layer_id * 12 + 4],
false, true);
false, !_sm_gt_eq_80);
}

cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._hidden_size * 3,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(
_int8_p_d_enc_wei[_layer_id * 4], _int8_ffn_in_buf, _int8_ffn_out_buf,
1, _tw._hidden_size * 3, _batch_token_num, _tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._hidden_size * 3,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
}

#ifdef DEBUG_RESULT
print_vec(_int8_ffn_in_buf, "attn qkv in", 20);
Expand All @@ -509,7 +523,7 @@ void QuantGptEncoder<OpType_>::self_attention() {
_p_d_self_k_cache1[_layer_id], _p_d_self_v_cache1[_layer_id], _p_d_v,
_batch_seq_len, _tw._dim_per_head, _tw._head_num, _max_thread_per_block,
_enc_clip_max[_layer_id * 12 + 8] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 11], true);
_quant_range / _enc_clip_max[_layer_id * 12 + 11], !_sm_gt_eq_80);

/* ---step 2. correlation = q * k, perform softmax on correlation--- */
CHECK_GPU_ERROR(cublasGemmStridedBatchedEx(
Expand Down Expand Up @@ -563,7 +577,7 @@ void QuantGptEncoder<OpType_>::self_attention() {
_int8_ffn_in_buf, _p_d_query, _batch_token_num, _tw._hidden_size,
_enc_clip_max[_layer_id * 12 + 9] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 6], _max_thread_per_block,
_stream, false, false, true);
_stream, false, false, !_sm_gt_eq_80);

return;
}
Expand All @@ -576,18 +590,27 @@ void QuantGptEncoder<OpType_>::self_attention_with_cache() {
_batch_size, _tw._hidden_size, _stream, _p_d_query, _int8_ffn_in_buf,
_p_device_wei[_weight_offset], _p_device_wei[_weight_offset + 1],
_p_device_wei[_weight_offset + 5], _max_thread_per_block,
_quant_range / _enc_clip_max[_layer_id * 12 + 4], false, true);
_quant_range / _enc_clip_max[_layer_id * 12 + 4], false, !_sm_gt_eq_80);
}

/* ---step 1. qkv = ori_q * qkv_wei + bias, and reshape qkv for multi-head
* gemm--- */
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._hidden_size * 3, _tw._hidden_size,
0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(
_int8_p_d_enc_wei[_layer_id * 4], _int8_ffn_in_buf, _int8_ffn_out_buf,
1, _tw._hidden_size * 3, _batch_size, _tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._hidden_size * 3,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
}

// get q, k, v by split and reshape qkv
ker_arrange_qkv_with_cache_i8I_i8O_launcher<_DataType>(
Expand All @@ -597,7 +620,7 @@ void QuantGptEncoder<OpType_>::self_attention_with_cache() {
_p_d_self_v_cache1[_layer_id], _p_d_self_v_cache2[_layer_id],
_batch_seq_len, _tw._dim_per_head, _tw._head_num,
_enc_clip_max[_layer_id * 12 + 8] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 11], true);
_quant_range / _enc_clip_max[_layer_id * 12 + 11], !_sm_gt_eq_80);

/* ---step 2. correlation = q * k, perform softmax on correlation
correlation: [batch_size, heads_num, 1, batch_seq_len]--- */
Expand Down Expand Up @@ -630,20 +653,30 @@ void QuantGptEncoder<OpType_>::self_attention_with_cache() {
_int8_ffn_in_buf, _p_d_query, _batch_size, _tw._hidden_size,
_enc_clip_max[_layer_id * 12 + 9] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 6], _max_thread_per_block,
_stream, false, false, true);
_stream, false, false, !_sm_gt_eq_80);
return;
}

template <OperationType OpType_>
void QuantGptEncoder<OpType_>::ffn_add_norm() {
/* ---step 1. first ffn layer--- */
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._inner_size, _tw._hidden_size,
0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 2], _int8_ffn_in_buf,
_int8_ffn_out_buf, 1, _tw._inner_size, _batch_token_num,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] *
_enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._inner_size,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2],
_cublas_lt_handle, _stream, _sm_gt_eq_80);
}

#ifdef DEBUG_RESULT
print_vec(_int8_ffn_in_buf, "ffn1 in", 20);
Expand All @@ -655,7 +688,7 @@ void QuantGptEncoder<OpType_>::ffn_add_norm() {
_batch_token_num, _stream, _int8_ffn_out_buf, _int8_ffn_in_buf,
_p_device_wei[_weight_offset + 9], _tw._inner_size,
_enc_clip_max[_layer_id * 12 + 10] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 7], true, false);
_quant_range / _enc_clip_max[_layer_id * 12 + 7], !_sm_gt_eq_80, false);

/* ---step 2. second ffn layer--- */
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 3], _int8_ffn_in_buf,
Expand All @@ -670,6 +703,7 @@ void QuantGptEncoder<OpType_>::ffn_add_norm() {

const _DataType *scale_ptr, *bias_ptr, *res_bias_ptr;
float clip_max, dequant_scale;
bool use_col32;
dequant_scale = _enc_clip_max[_layer_id * 12 + 3] *
_enc_clip_max[_layer_id * 12 + 7] /
(_quant_range * _quant_range);
Expand All @@ -678,39 +712,51 @@ void QuantGptEncoder<OpType_>::ffn_add_norm() {
bias_ptr = _p_device_emb[3];
res_bias_ptr = nullptr;
clip_max = _output_ln_clip_max;
use_col32 = true;
} else {
scale_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer];
bias_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 1];
res_bias_ptr =
_p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 5];
clip_max = _enc_clip_max[(_layer_id + 1) * 12 + 4];
use_col32 = !_sm_gt_eq_80;
}

ker_residual_bias_ln_i32I_i8O_launcher<_DataType>(
_int32_ffn_out_buf, scale_ptr, bias_ptr, res_bias_ptr, _int8_ffn_in_buf,
_p_d_query, _batch_token_num, _tw._hidden_size, dequant_scale,
_quant_range / clip_max, _max_thread_per_block, _stream, false, false,
true, _scaled_ffn2_colsum[_layer_id]);
use_col32, _scaled_ffn2_colsum[_layer_id]);

return;
}

template <OperationType OpType_>
void QuantGptEncoder<OpType_>::ffn_add_norm_with_cache() {
/* ---step 1. first ffn layer--- */
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._inner_size, _tw._hidden_size, 0,
0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 2], _int8_ffn_in_buf,
_int8_ffn_out_buf, 1, _tw._inner_size, _batch_size,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] *
_enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._inner_size, _tw._hidden_size, 0,
0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2],
_cublas_lt_handle, _stream, _sm_gt_eq_80);
}

ker_bias_gelu_i8I_i8O_launcher<_DataType>(
_batch_size, _stream, _int8_ffn_out_buf, _int8_ffn_in_buf,
_p_device_wei[_weight_offset + 9], _tw._inner_size,
_enc_clip_max[_layer_id * 12 + 10] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 7], true, false);
_quant_range / _enc_clip_max[_layer_id * 12 + 7], !_sm_gt_eq_80, false);

/* ---step 2. second ffn layer--- */
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 3], _int8_ffn_in_buf,
Expand All @@ -719,6 +765,7 @@ void QuantGptEncoder<OpType_>::ffn_add_norm_with_cache() {

const _DataType *scale_ptr, *bias_ptr, *res_bias_ptr;
float clip_max, dequant_scale;
bool use_col32;
dequant_scale = _enc_clip_max[_layer_id * 12 + 3] *
_enc_clip_max[_layer_id * 12 + 7] /
(_quant_range * _quant_range);
Expand All @@ -727,19 +774,21 @@ void QuantGptEncoder<OpType_>::ffn_add_norm_with_cache() {
bias_ptr = _p_device_emb[3];
res_bias_ptr = nullptr;
clip_max = _output_ln_clip_max;
use_col32 = true;
} else {
scale_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer];
bias_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 1];
res_bias_ptr =
_p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 5];
clip_max = _enc_clip_max[(_layer_id + 1) * 12 + 4];
use_col32 = !_sm_gt_eq_80;
}

ker_residual_bias_ln_i32I_i8O_launcher<_DataType>(
_int32_ffn_out_buf, scale_ptr, bias_ptr, res_bias_ptr, _int8_ffn_in_buf,
_p_d_query, _batch_size, _tw._hidden_size, dequant_scale,
_quant_range / clip_max, _max_thread_per_block, _stream, false, false,
true, _scaled_ffn2_colsum[_layer_id]);
use_col32, _scaled_ffn2_colsum[_layer_id]);

return;
}
Expand Down
Loading