Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support BIPOP-CMA-ES algorithm. #136

Merged
merged 5 commits into from
Jul 25, 2020
Merged

Support BIPOP-CMA-ES algorithm. #136

merged 5 commits into from
Jul 25, 2020

Conversation

c-bata
Copy link
Owner

@c-bata c-bata commented Jul 25, 2020

BIPOP-CMA-ES is a multi-start CMA-ES with equal budgets for two interlaced restart strategies, one with an increasing population size and one with varying small population sizes.

rastrigin-function-dim-2-1a14f4610cabf55e51b3b006bfe723dcadef3a57d9eb5c82a09c2c9fbb804c42

Hansen N. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed. In the workshop Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pages 2389–2395. ACM, 2009.

@github-actions
Copy link

github-actions bot commented Jul 25, 2020

Benchmark result of rosenbrock function

plot curve image

  • Report ID: b7b8cccd46397ff21164bf7c48b6aac89e7eec3ed5b68f68d56671706eb15ac5
  • Kurobako Version: 0.1.10
  • Number of Solvers: 7
  • Number of Problems: 1
  • Metrics Precedence: best value -> AUC

Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.

Please expand here for more details.

Table of Contents

  1. Overall Results
  2. Individual Results
  3. Solvers
  4. Problems
  5. Studies

Overall Results

Solver Borda Firsts
Goptuna (BIPOP-CMA-ES) 0 1
Goptuna (CMA-ES) 0 1
Goptuna (IPOP-CMA-ES) 0 1
Goptuna (TPE) 0 1
Optuna (CMA-ES) 0 1
Optuna (TPE) 0 1
Random 0 1

Individual Results

(1) Problem: Rosenbrock Function

Ranking Solver Best (avg +- sd) AUC (avg +- sd) Elapsed (avg +- sd)
1 Goptuna (TPE) (study) 4.702807 +- 4.378348 231728.954 +- 329038.327 0.056 +- 0.002
1 Optuna (TPE) (study) 3.335621 +- 4.531201 304779.288 +- 201670.007 0.794 +- 0.009
1 Optuna (CMA-ES) (study) 0.338189 +- 0.509293 262976.352 +- 188831.092 0.197 +- 0.006
1 Goptuna (BIPOP-CMA-ES) (study) 1.896292 +- 3.201906 7277.894 +- 4959.995 0.021 +- 0.001
1 Goptuna (IPOP-CMA-ES) (study) 1.896292 +- 3.201906 7277.894 +- 4959.995 0.021 +- 0.002
1 Goptuna (CMA-ES) (study) 1.896292 +- 3.201906 7277.894 +- 4959.995 0.022 +- 0.002
1 Random (study) 26.724556 +- 28.472584 264073.317 +- 311529.192 0.000 +- 0.000

Solvers

ID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "bipop-cmaes"
    ]
  }
}

specification:

{
  "name": "Goptuna (BIPOP-CMA-ES)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "cmaes"
    ]
  }
}

specification:

{
  "name": "Goptuna (CMA-ES)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "ipop-cmaes"
    ]
  }
}

specification:

{
  "name": "Goptuna (IPOP-CMA-ES)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2b

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "tpe"
    ]
  }
}

specification:

{
  "name": "Goptuna (TPE)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: 8931843d684313fcaad663dbaa143cbb7bea514bc200c5c8593e10ad7d8d446c

recipe:

{
  "command": {
    "path": "python",
    "args": [
      "/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
      "cmaes"
    ]
  }
}

specification:

{
  "name": "Optuna (CMA-ES)",
  "attrs": {
    "github": "https://github.com/optuna/optuna",
    "paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
    "version": "optuna=1.5.0, kurobako-py=0.1.7"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6c

recipe:

{
  "command": {
    "path": "python",
    "args": [
      "/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
      "tpe"
    ]
  }
}

specification:

{
  "name": "Optuna (TPE)",
  "attrs": {
    "github": "https://github.com/optuna/optuna",
    "paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
    "version": "optuna=1.5.0, kurobako-py=0.1.7"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2

recipe:

{
  "random": {}
}

specification:

{
  "name": "Random",
  "attrs": {
    "version": "kurobako_solvers=0.1.7"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "LOG_UNIFORM_DISCRETE",
    "CATEGORICAL",
    "CONDITIONAL",
    "MULTI_OBJECTIVE",
    "CONCURRENT"
  ]
}

Problems

ID: 01f15f09812e2d814a26d1219a981765c157b45100698158c37abe239cea997b

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/rosenbrock_problem",
    "args": []
  }
}

specification:

{
  "name": "Rosenbrock Function",
  "attrs": {},
  "params_domain": [
    {
      "name": "x1",
      "range": {
        "type": "CONTINUOUS",
        "low": -5.0,
        "high": 10.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "x2",
      "range": {
        "type": "CONTINUOUS",
        "low": -5.0,
        "high": 10.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    }
  ],
  "values_domain": [
    {
      "name": "Rosenbrock",
      "range": {
        "type": "CONTINUOUS"
      },
      "distribution": "UNIFORM",
      "constraint": null
    }
  ],
  "steps": 1
}

Studies

ID: 448a4fa37c2c00cd2de71c65834d73154693960539a6aab5ea721d8e87cebf27

ID: 61d0e750fd0ffa044e7c517592e06f5a752aac50eb791f8194f11ca88afc650f

ID: 0ea83c6798372e5bb6cc28f133c9f43d8fc3cc2fc35bac6c736d0b173932eae5

ID: 9f7d1940842a6b2263038ddb1e94170e969f33e73dfa4fdb0f4302d1ca147ec4

ID: fac4aa5c1cb91e3a4b7b06481bd8bca69d9e363c718dae984eaf369c9d95c73a

ID: 2dabcbaaca241ae2723f9c504aa6f2e6fbbd25022b83f7b7b69b8aca4dec9f64

ID: f853cdb8bf8b30946ab222443e8ea4105b3e4aa0dde8d0a1f14b8310b870a195

@github-actions
Copy link

github-actions bot commented Jul 25, 2020

Benchmark result of sigopt/evalset/Ackley problem

plot curve image

  • Report ID: e0ad916eeaa059d8dc752a9368f3586a5bb461fa704ceeec2381c29ebfe1a6be
  • Kurobako Version: 0.1.10
  • Number of Solvers: 6
  • Number of Problems: 1
  • Metrics Precedence: best value -> AUC

Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.

Please expand here for more details.

Table of Contents

  1. Overall Results
  2. Individual Results
  3. Solvers
  4. Problems
  5. Studies

Overall Results

Solver Borda Firsts
Goptuna (BIPOP-CMA-ES) 0 1
Goptuna (CMA-ES) 0 1
Goptuna (IPOP-CMA-ES) 0 1
Goptuna (TPE) 0 1
Optuna (TPE) 0 1
Random 0 1

Individual Results

(1) Problem: sigopt/evalset/Ackley(dim=10)

Ranking Solver Best (avg +- sd) AUC (avg +- sd) Elapsed (avg +- sd)
1 Goptuna (TPE) (study) 5.111347 +- 0.487780 8322.563 +- 592.899 42.871 +- 6.946
1 Optuna (TPE) (study) 6.326946 +- 1.945140 8739.853 +- 1732.156 123.787 +- 31.467
1 Goptuna (BIPOP-CMA-ES) (study) 0.050740 +- 0.039694 3875.009 +- 339.454 1.440 +- 0.304
1 Goptuna (IPOP-CMA-ES) (study) 0.050740 +- 0.039694 3875.009 +- 339.454 1.291 +- 0.221
1 Goptuna (CMA-ES) (study) 0.050740 +- 0.039694 3875.009 +- 339.454 1.399 +- 0.295
1 Random (study) 15.476572 +- 0.916833 16117.231 +- 457.140 0.001 +- 0.000

Solvers

ID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "bipop-cmaes"
    ]
  }
}

specification:

{
  "name": "Goptuna (BIPOP-CMA-ES)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "cmaes"
    ]
  }
}

specification:

{
  "name": "Goptuna (CMA-ES)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "ipop-cmaes"
    ]
  }
}

specification:

{
  "name": "Goptuna (IPOP-CMA-ES)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2b

recipe:

{
  "command": {
    "path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
    "args": [
      "tpe"
    ]
  }
}

specification:

{
  "name": "Goptuna (TPE)",
  "attrs": {
    "github": "https://github.com/c-bata/goptuna"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6c

recipe:

{
  "command": {
    "path": "python",
    "args": [
      "/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
      "tpe"
    ]
  }
}

specification:

{
  "name": "Optuna (TPE)",
  "attrs": {
    "github": "https://github.com/optuna/optuna",
    "paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
    "version": "optuna=1.5.0, kurobako-py=0.1.7"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "CATEGORICAL",
    "CONDITIONAL",
    "CONCURRENT"
  ]
}

ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2

recipe:

{
  "random": {}
}

specification:

{
  "name": "Random",
  "attrs": {
    "version": "kurobako_solvers=0.1.7"
  },
  "capabilities": [
    "UNIFORM_CONTINUOUS",
    "UNIFORM_DISCRETE",
    "LOG_UNIFORM_CONTINUOUS",
    "LOG_UNIFORM_DISCRETE",
    "CATEGORICAL",
    "CONDITIONAL",
    "MULTI_OBJECTIVE",
    "CONCURRENT"
  ]
}

Problems

ID: 93492282fbba0e83fba906eaf579809327a6e263940fb4fd42cc3abc9a155beb

recipe:

{
  "sigopt": {
    "name": "ACKLEY",
    "dim": 10
  }
}

specification:

{
  "name": "sigopt/evalset/Ackley(dim=10)",
  "attrs": {
    "github": "https://github.com/sigopt/evalset",
    "paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
    "version": "kurobako_problems=0.1.7"
  },
  "params_domain": [
    {
      "name": "p0",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p1",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p2",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p3",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p4",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p5",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p6",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p7",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p8",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    },
    {
      "name": "p9",
      "range": {
        "type": "CONTINUOUS",
        "low": -10.0,
        "high": 30.0
      },
      "distribution": "UNIFORM",
      "constraint": null
    }
  ],
  "values_domain": [
    {
      "name": "Objective Value",
      "range": {
        "type": "CONTINUOUS"
      },
      "distribution": "UNIFORM",
      "constraint": null
    }
  ],
  "steps": 1
}

Studies

ID: f0fa2ceb80845ca22ffa2479f45c1ff82f4870c1bf20f556b5155edd6387cda8

ID: 1d5f43ce7d06f0ecc20f649b9a660458e0e55148ceb2ff28705e0a123f802638

ID: 6f8c38733e62ecf7d89a3669fe8739e12eee2d4828c035728ff6e509aac633af

ID: 66298c57166677e2f5d11b0595998342167947d2100a4d34abe76b2d73bdbd0a

ID: 135c5259d0a821bd89b8eb14637fe9ff1e1028162a8a083ac07acff879672620

ID: ac65437313c4ab7ce99a7ecb88d98d40e124c8e950a546486d06df3b17d4e0ec

@c-bata c-bata changed the title Support BIPOP-CMA-ES sampler. Support BIPOP-CMA-ES algorithm. Jul 25, 2020
@c-bata c-bata merged commit c13e9a4 into master Jul 25, 2020
@c-bata c-bata deleted the bipop-cmaes branch July 25, 2020 12:48
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant