-
Notifications
You must be signed in to change notification settings - Fork 22
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Support BIPOP-CMA-ES algorithm. #136
Conversation
Benchmark result of rosenbrock function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rosenbrock Function
SolversID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"bipop-cmaes"
]
}
} specification: {
"name": "Goptuna (BIPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"tpe"
]
}
} specification: {
"name": "Goptuna (TPE)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 8931843d684313fcaad663dbaa143cbb7bea514bc200c5c8593e10ad7d8d446crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "Optuna (CMA-ES)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"tpe"
]
}
} specification: {
"name": "Optuna (TPE)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 01f15f09812e2d814a26d1219a981765c157b45100698158c37abe239cea997brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/rosenbrock_problem",
"args": []
}
} specification: {
"name": "Rosenbrock Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rosenbrock",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 448a4fa37c2c00cd2de71c65834d73154693960539a6aab5ea721d8e87cebf27
ID: 61d0e750fd0ffa044e7c517592e06f5a752aac50eb791f8194f11ca88afc650f
ID: 0ea83c6798372e5bb6cc28f133c9f43d8fc3cc2fc35bac6c736d0b173932eae5
ID: 9f7d1940842a6b2263038ddb1e94170e969f33e73dfa4fdb0f4302d1ca147ec4
ID: fac4aa5c1cb91e3a4b7b06481bd8bca69d9e363c718dae984eaf369c9d95c73a
ID: 2dabcbaaca241ae2723f9c504aa6f2e6fbbd25022b83f7b7b69b8aca4dec9f64
ID: f853cdb8bf8b30946ab222443e8ea4105b3e4aa0dde8d0a1f14b8310b870a195
|
Benchmark result of sigopt/evalset/Ackley problem
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: sigopt/evalset/Ackley(dim=10)
SolversID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"bipop-cmaes"
]
}
} specification: {
"name": "Goptuna (BIPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"tpe"
]
}
} specification: {
"name": "Goptuna (TPE)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"tpe"
]
}
} specification: {
"name": "Optuna (TPE)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 93492282fbba0e83fba906eaf579809327a6e263940fb4fd42cc3abc9a155bebrecipe: {
"sigopt": {
"name": "ACKLEY",
"dim": 10
}
} specification: {
"name": "sigopt/evalset/Ackley(dim=10)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.7"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p9",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: f0fa2ceb80845ca22ffa2479f45c1ff82f4870c1bf20f556b5155edd6387cda8
ID: 1d5f43ce7d06f0ecc20f649b9a660458e0e55148ceb2ff28705e0a123f802638
ID: 6f8c38733e62ecf7d89a3669fe8739e12eee2d4828c035728ff6e509aac633af
ID: 66298c57166677e2f5d11b0595998342167947d2100a4d34abe76b2d73bdbd0a
ID: 135c5259d0a821bd89b8eb14637fe9ff1e1028162a8a083ac07acff879672620
ID: ac65437313c4ab7ce99a7ecb88d98d40e124c8e950a546486d06df3b17d4e0ec
|
BIPOP-CMA-ES is a multi-start CMA-ES with equal budgets for two interlaced restart strategies, one with an increasing population size and one with varying small population sizes.
Hansen N. Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed. In the workshop Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pages 2389–2395. ACM, 2009.