-
Notifications
You must be signed in to change notification settings - Fork 22
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Rastrigin benchmark. #141
Rastrigin benchmark. #141
Conversation
c-bata
commented
Jul 26, 2020
•
edited
Loading
edited
Benchmark result of Rosenbrock function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rosenbrock Function
SolversID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"bipop-cmaes"
]
}
} specification: {
"name": "Goptuna (BIPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"tpe"
]
}
} specification: {
"name": "Goptuna (TPE)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 8931843d684313fcaad663dbaa143cbb7bea514bc200c5c8593e10ad7d8d446crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "Optuna (CMA-ES)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"tpe"
]
}
} specification: {
"name": "Optuna (TPE)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 01f15f09812e2d814a26d1219a981765c157b45100698158c37abe239cea997brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/rosenbrock_problem",
"args": []
}
} specification: {
"name": "Rosenbrock Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rosenbrock",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 448a4fa37c2c00cd2de71c65834d73154693960539a6aab5ea721d8e87cebf27
ID: 61d0e750fd0ffa044e7c517592e06f5a752aac50eb791f8194f11ca88afc650f
ID: 0ea83c6798372e5bb6cc28f133c9f43d8fc3cc2fc35bac6c736d0b173932eae5
ID: 9f7d1940842a6b2263038ddb1e94170e969f33e73dfa4fdb0f4302d1ca147ec4
ID: fac4aa5c1cb91e3a4b7b06481bd8bca69d9e363c718dae984eaf369c9d95c73a
ID: 2dabcbaaca241ae2723f9c504aa6f2e6fbbd25022b83f7b7b69b8aca4dec9f64
ID: f853cdb8bf8b30946ab222443e8ea4105b3e4aa0dde8d0a1f14b8310b870a195
|
Benchmark result of Rastrigin problem
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rastrigin function (dim=2)
SolversID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"bipop-cmaes"
]
}
} specification: {
"name": "Goptuna (BIPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"tpe"
]
}
} specification: {
"name": "Goptuna (TPE)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 8931843d684313fcaad663dbaa143cbb7bea514bc200c5c8593e10ad7d8d446crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "Optuna (CMA-ES)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"tpe"
]
}
} specification: {
"name": "Optuna (TPE)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 0091bc29d1a812f56db93aa64502974e93cc18283ec26b6c5c99b085b81529b8recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/rastrigin_problem",
"args": [
"2"
]
}
} specification: {
"name": "Rastrigin function (dim=2)",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rastrigin",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 8c50e86759933a0dbaf04c154ae3cebfbbf6b397a49a1db1b47ac5dae7365a89
ID: 5d4812251fac7d96cd6bcb683c134e553741f955e2379673731a49deb201616d
ID: af7aa97997c9e5ca6c80b9a7adc66f4979f841b5abba604f9329d12e88fd05fe
ID: ad5dfb8e8e8259b0545508a7f9bb4794a20418603980eec1b360a0c1109a2024
ID: f156615c68518cb4353f04dea3c364c1df46918484a4b84e612a63733075fecf
ID: fa9d2c5ebf27912d80d2ed5427827541df0332cf56973bcbb8cc878af37ae53c
ID: 235bc03468a4b2491baa33c1956bb754d38a1022f20005381e0557818c7d759f
|
for i := 0; i < o.dim; i++ { | ||
if o.c.At(i, i) <= 0 { | ||
minC[i] = epsilon | ||
} | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It is required to add epsilon to negative values only for termination criterions.