Skip to content

caixh39/Mini_Xception

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Facial Emotion Recognition

Neural Network: mini_Xception

  • base on Xception architecture, detecting multi scale info from image

Face detect using Dlib library

  • Hog for face dectection

using

  • $ python video_emotion_color_demo.py

Defict:

  • facial emotion recognition's accuracy is only 65.87% when reruning the model, via dataset is Train and Public datas of fer2013.

Remend:

  • Modify the architectures of cnn model to improve accuracy

Problem:

  • keras.preprocessing.image.load_img(image_path, grayscale,target_size)
  • open ../python2.7/dist_packages/keras_preprocessing.image.py
  • comment " 'load_img' function else color mode"

Detail explain:

Facial Emotion Recognition timely and quickly

REQUIREMENTS.txt: 表情识别算法所需的算法环境

src:

  • ./train_emotion_classifier_mul_gpu.py: 模型训练
  • ./video_emotion_color_demo.py: 摄像头进行实时人脸表情识别测试
  • ./video_emotion_color_data_csv.py: 保存实时人脸表情识别测试的情绪数据信息
  • ./model_evaluate.py: 对训练好的模型进行fer2013 private datasets 进行测试
  • ./confusion_matrix.py: 生成测试集的混淆矩阵及其它量化指标
  • ./image_emotion_demo_haar.py: 对单张图像进行情绪识别(opencv-haar 人脸检测算法)
  • ./image_emotion_demo_dlib.py: 对单张图像进行情绪识别(dlib-hog 人脸检测算法)
  • ./feature_visual.py: 对模型学习特征的过程进行可视化
  • ./save_emotion_info_csv.py: 对小孩的情绪视频,进行表情识别并保存对应数据
  • ./Config.py: 全局配置参数
  • utlis:
    • ./convert_fer2013.py: 将fer2013.csv 划分训练集/验证集/测试集
    • ./data_augmentation.py:
    • ./datasets.py
    • ./inference.py
    • ./preprocessor.py
    • ./utils.py
  • models: 模型结构
    • ./cnn.py: mini_XCEPTION + mini_concate_XCEPTION_V1 + mini_concate_XCEPTION_V2 + mini_concate_XCEPTION_V3
    • ./compare_cnn.py: XceptionNet + MobileNet + InceptionV3 + InceptionResNetV2
    • ./Module_Net.py: SE model + conv2d_bn + sep_conv2d_bn + DepthwiseConv2D 常用网络模块的代码实现

datasets:

  • 表情识别算法进行模型训练的数据集:fer2013, CK+
  • fer2013: 将fer2013按 training dataset, public dataset划分为训练集 test.csv, private dataset为 test.csv
  • 情绪数值记录:用之前采集表情数据的视频进行模拟表情数据值的提取

images:

  • confusion_matrix: 训练好的模型在测试集预测结果的混淆矩阵
  • models: 模型的结构图
  • visualize_filter: 图片送入模型,在不同卷积层的特征图 (mini_Xception 模型测试)

trained_models:

  • detection_models: opencv-haar 人脸检测的配置文件
  • emotion_models: 模型训练过程,生成的模型参数文件
  • test_models: 模型训练得到的最好的结果

Releases

No releases published

Packages

No packages published

Languages