Skip to content

cancaries/SceneCrafter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo

Unraveling the Effects of Synthetic Data on
End-to-End Autonomous Driving Humanoid Robots

Junhao Ge*1 , Zuhong Liu*1 , Longteng Fan*1 Yifan Jiang*1
Jiaqi Su1 , Yiming Li2 , Zhejun Zhang3 , Siheng Chen1,4
1Shanghai Jiao Tong University 2New York University
3ETH Zurich 4Shanghai Artificial Intelligence Laboratory

arXiv Paper


This is the official project repository of the paper Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving.

TODOs

  • Arxiv Link
  • Code Release
    • Data Processing
    • Data Generation
    • Data Rendering
    • Closed-Loop Evaluation
  • Demo Data Relase
  • Installation of this repo
  • Demo script for demo
  • Comment for Code

SceneCrafter

A comprehensive scene generation and simulation framework for autonomous driving research.

Overview

SceneCrafter is a powerful toolkit for generating realistic driving scenarios, simulating traffic behaviors, and rendering high-quality scene data for autonomous driving research and development.

Installation

Prerequisites

  • Python 3.8+
  • CUDA-enabled GPU (for rendering)
  • pytorch 2.4.1+cu121

Set up the conda environment

# git clone the repository
git clone https://github.com/cancaries/SceneCrafter.git
cd SceneCrafter

# Set conda environment
conda create -n scenecrafter python=3.8
conda activate scenecrafter

# Install torch (corresponding to your CUDA version)
pip install torch==2.4.1+cu121 torchvision==0.19.1+cu121 torchaudio==2.4.1+cu121 --index-url https://download.pytorch.org/whl/cu121

# Install requirements
pip install -r requirements.txt

# Install SceneRenderer submodules(Street Gaussian)
pip install ./SceneRenderer/street-gaussian/submodules/diff-gaussian-rasterization
pip install ./SceneRenderer/street-gaussian/submodules/simple-knn
pip install ./SceneRenderer/street-gaussian/submodules/simple-waymo-open-dataset-reader

Demo Data

We provide a demo data in demo link, please unzip it in the root folder. You can try the demo by running the following command:

python ./scripts/generate_data.sh

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If you use SceneCrafter in your research, please cite our work:

@misc{ge2025unravelingeffectssyntheticdata,
      title={Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving}, 
      author={Junhao Ge and Zuhong Liu and Longteng Fan and Yifan Jiang and Jiaqi Su and Yiming Li and Zhejun Zhang and Siheng Chen},
      year={2025},
      eprint={2503.18108},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2503.18108}, 
}

Acknowledgements

SceneRenderer is built based on Street Gaussian. More details can be found in Street Gaussian.

About

Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published