Skip to content

Code for paper "Measuring Social Biases in Grounded Vision and Language Embeddings"

Notifications You must be signed in to change notification settings

candacelax/bias-in-vision-and-language

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Measuring Social Biases in Grounded Visual and Language Embeddings

This is the repo for our paper Measuring Social Biases in Grounded Vision and Language Embeddings. We implement a version of WEAT/SEAT for visually grounded word embeddings. This is code borrowed and modified from this repo. Authors: Candace Ross, Boris Katz, Andrei Barbu

Installation

Create the conda environment.

	git clone git@github.com:candacelax/bias-in-vision-and-language.git && cd bias-in-vision-and-language

	conda env create -f environment.yml
	pip install --no-deps allennlp==0.8.0
	python -m spacy download en

	# download specific model repos
	git clone git@github.com:uclanlp/visualbert.git

Usage

After downloading data, pretrained models and image features (described below), to run GWEAT/GSEAT tests, run: ./main.py --config CONFIG_FILEPATH

The config files are contained in configs are include tests of Conceptual Captions and Google Image data on pretrained ViLBERT and tests of COCO and Google Image data on pretrained VisualBERT.

Download data

The paths for images from Google Image Search are contained in data/google-images. To download all at once, run

   ./scripts/download_data.sh data/google-images

All downloaded images are sub-directories, such as ── weat8 │ ├── attr_man │ │ ├── aunt_0.jpg │ │ ├── aunt_1.jpg │ │ ├── aunt_2.jpg | | ... | | └── technology_9.jpg │ ├── attr_woman │ │ ├── aunt_0.jpg │ │ ├── aunt_1.jpg │ │ ├── aunt_2.jpg | | ... | | └── technology_9.jpg | └── get.sh

Download pretrained models

Download the pretrained models for:

LXMert is built on HuggingFace, which handles the model download when creating an instance.

An adapted open-source helper script for downloading models from Google drive:

	python scripts/download_gdrive.py GOOGLE_DRIVE_ID PATH_TO_SAVE

Download and extract image features

For the models below, pretrained on either COCO or Conceptual Captions, some of the pre-extracted image features were available in their respective repos. For modeling data from Google Image search, we followed each implementation's original pipeline for feature extraction.

VisualBERT

VisualBERT uses Detectron to get features from faster-rcnn.

   git clone git@github.com:facebookresearch/Detectron.git
   mkdir Detectron/pretrained-models
   mv Detectron visualbert/utils

   # download pretrained model
   wget -o visualbert/utils/Detectron/pretrained-models/detectron_35861858.pkl https://dl.fbaipublicfiles.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl

   # run feature extract example
   python visualbert/utils/get_image_features/extract_image_features_nlvr.py \
   	  --im_or_folder data/XX/BIAS-TEST-IMAGES \
	  --one_giant_file visualbert/image-features/XX/BIAS_TEST_NAME.th \
	  --output_dir temp \
	  --cfg visualbert/utils/Detectron/configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
	  --wts visualbert/utils/Detectron/pretrained-models/detectron_35861858.pkl \
	  --existing visualbert/image-features/XX/BIAS_TEST_NAME.th # ONLY IF UPDATING PREVIOUS RUNS   

ViLBERT

Clone bottom-up-attention (be sure to use their forked version) and create Docker image of Caffe.

	BASE_DIR=XX/SET_TO_LOCATION_OF_DOCKER
	DATA_DIR=XX/vilbert_beta/data/conceptual-captions
	OUTPUT_FILE=XX/vilbert_beta_features/conceptual_val_resnet101_faster_rcnn_genome.tsv
	SPLIT=conceptual_image_val

	# create docker image
 	docker build -f caffe/docker/standalone/gpu/Dockerfile -t caffe_image_features .

   	# run container
	docker container run -t -v $BASE_DIR/features:$BASE_DIR/features \
	    --gpus all caffe_image_features python2.7 $BASE_DIR/tools/generate_tsv.py --cfg $BASE_DIR/experiments/cfgs/faster_rcnn_end2end_resnet.yml --def $BASE_DIR/models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt --net $BASE_DIR/models/faster_rcnn_models/resnet101_faster_rcnn_final.caffemodel --total_group 1 --group_id 0 --split $SPLIT --gpu 0,1,2,3,4,5,6,7 --out $OUTPUT_FILE --data_dir $DATA_DIR --class-file $CLASS_FILE

    # convert features to LMDB
	sudo chown -R $USER:$USER $(dirname $OUTPUT_FILE)
	python vilbert_beta/scripts/convert_general_lmdb.py --infile_pattern bottom-up-attention/features/conceptual/conceptual_val_resnet101_faster_rcnn_genome.tsv --save_path bottom-up-attention/features/conceptual/conceptual_val_resnet101_faster_rcnn_genome.lmdb

	python vilbert_beta/scripts/convert_general_lmdb.py --infile_pattern bottom-up-attention/features/google-images/angry_black_women_resnet101_faster_rcnn_genome.tsv --save_path bottom-up-attention/features/google-images/angry_black_women_resnet101_faster_rcnn_genome.lmdb/

VLBERT

LXMert

VL-BERT

If Docker image has already been created above, then:

	# run container
	docker container run -t -v $BASE_DIR/features:$BASE_DIR/features \
	     --gpus all caffe_image_features \
	     python2.7 $BASE_DIR/tools/generate_tsv_v2.py --cfg $BASE_DIR/experiments/cfgs/faster_rcnn_end2end_resnet.yml \
	     	       --def $BASE_DIR/models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt \
		       --net $BASE_DIR/models/faster_rcnn_models/resnet101_faster_rcnn_final.caffemodel \
		       --total_group 1 --group_id 0 --split $SPLIT \
		       --gpu 0,1,2,3,4,5,6,7 --out $OUTPUT_FILE --data_dir $DATA_DIR

        # convert features to LMDB
	sudo chown -R $USER:$USER $(dirname $OUTPUT_FILE)
	python vilbert_beta/scripts/convert_general_lmdb.py --infile_pattern bottom-up-attention/features/conceptual/conceptual_val_resnet101_faster_rcnn_genome.tsv --save_path bottom-up-attention/features/conceptual/conceptual_val_resnet101_faster_rcnn_genome.lmdb

	python vilbert_beta/scripts/convert_general_lmdb.py --infile_pattern bottom-up-attention/features/google-images/angry_black_women_resnet101_faster_rcnn_genome.tsv --save_path bottom-up-attention/features/google-images/angry_black_women_resnet101_faster_rcnn_genome.lmdb/


## Face Detection
To run over custom images,
```bash
    cd scripts
    # TODO forked version

ViLBERT

	sudo docker container run -t -v /storage/ccross/bias-grounded-bert/bottom-up-attention/features:/storage/ccross/bias-grounded-bert/bottom-up-attention/features \
						--gpus all caffe_image_features \
				python2.7 /storage/ccross/bias-grounded-bert/bottom-up-attention//tools/generate_tsv.py \
					--cfg /storage/ccross/bias-grounded-bert/bottom-up-attention/experiments/cfgs/faster_rcnn_end2end_resnet.yml \
					--def /storage/ccross/bias-grounded-bert/bottom-up-attention//models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt \
				--net /storage/ccross/bias-grounded-bert/bottom-up-attention/models/faster_rcnn_models/resnet101_faster_rcnn_final_iter_320000.caffemodel \
				--total_group 1 --group_id 0 --split  custom \
				--gpu 0,1,2,3,4,5,6,7 --out /storage/ccross/bias-grounded-bert/bottom-up-attention/features/conceptual/conceptual_val_resnet101_faster_rcnn_genome.tsv \
				--data_dir /storage/ccross/bias-grounded-bert/bottom-up-attention/data/concap-bias-val \
				--class_file /storage/ccross/bias-grounded-bert/bottom-up-attention/data/genome/1600-400-20/objects_vocab.txt


	sudo docker container run -t -v /storage/ccross/bias-grounded-bert/bottom-up-attention/features:/storage/ccross/bias-grounded-bert/bottom-up-attention/features \
						--gpus all caffe_image_features \
				python2.7 /storage/ccross/bias-grounded-bert/bottom-up-attention//tools/generate_tsv.py \
					--cfg /storage/ccross/bias-grounded-bert/bottom-up-attention/experiments/cfgs/faster_rcnn_end2end_resnet.yml \
					--def /storage/ccross/bias-grounded-bert/bottom-up-attention//models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt \
				--net /storage/ccross/bias-grounded-bert/bottom-up-attention/models/faster_rcnn_models/resnet101_faster_rcnn_final_iter_320000.caffemodel \
				--total_group 1 --group_id 0 --split  google_images \
				--gpu 0,1,2,3,4,5,6,7 --out /storage/ccross/bias-grounded-bert/bottom-up-attention/features/google-images/angry_black_women_val_resnet101_faster_rcnn_genome.tsv \
				--data_dir /storage/ccross/bias-grounded-bert/bottom-up-attention/data/google-images/angry-black-women \
				--class_file /storage/ccross/bias-grounded-bert/bottom-up-attention/data/genome/1600-400-20/objects_vocab.txt

VL-BERT

	sudo docker container run -t -v /storage/ccross/bias-grounded-bert/bottom-up-attention/features:/storage/ccross/bias-grounded-bert/bottom-up-attention/features \
						--gpus all caffe_image_features \
				python2.7 /storage/ccross/bias-grounded-bert/bottom-up-attention//tools/generate_tsv_v2.py \
					--cfg /storage/ccross/bias-grounded-bert/bottom-up-attention/experiments/cfgs/faster_rcnn_end2end_resnet.yml \
					--def /storage/ccross/bias-grounded-bert/bottom-up-attention//models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt \
				--net /storage/ccross/bias-grounded-bert/bottom-up-attention/models/faster_rcnn_models/resnet101_faster_rcnn_final_iter_320000.caffemodel --split  custom \
				--total_group 1 --group_id 0 --gpu 0,1,2,3,4,5,6,7 --out /storage/ccross/bias-grounded-bert/bottom-up-attention/features/conceptual-v2/conceptual_val_resnet101_faster_rcnn_genome.tsv \
				--data_dir /storage/ccross/bias-grounded-bert/bottom-up-attention/data/concap-bias-val \
				--class_file /storage/ccross/bias-grounded-bert/bottom-up-attention/data/genome/1600-400-20/objects_vocab.txt

	sudo docker container run -t -v /storage/ccross/bias-grounded-bert/bottom-up-attention/features:/storage/ccross/bias-grounded-bert/bottom-up-attention/features \
						--gpus all caffe_image_features \
				python2.7 /storage/ccross/bias-grounded-bert/bottom-up-attention//tools/generate_tsv_v2.py \
					--cfg /storage/ccross/bias-grounded-bert/bottom-up-attention/experiments/cfgs/faster_rcnn_end2end_resnet.yml \
					--def /storage/ccross/bias-grounded-bert/bottom-up-attention//models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt \
				--net /storage/ccross/bias-grounded-bert/bottom-up-attention/models/faster_rcnn_models/resnet101_faster_rcnn_final_iter_320000.caffemodel --split  custom \
				--total_group 1 --group_id 0 --gpu 0,1,2,3,4,5,6,7 --out /storage/ccross/bias-grounded-bert/bottom-up-attention/features/google-images-caffe-v2/weat3.tsv \
				--data_dir /storage/ccross/bias-grounded-bert/bottom-up-attention/data/google-images/weat3 \
				--class_file /storage/ccross/bias-grounded-bert/bottom-up-attention/data/genome/1600-400-20/objects_vocab.txt

About

Code for paper "Measuring Social Biases in Grounded Vision and Language Embeddings"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages