Skip to content

canstralian/FineTuneOptimizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FineTuneOptimizer

FineTuneOptimizer is a Python library designed to streamline and optimize the fine-tuning process for pre-trained machine learning models.

Key Features:

  • Fine-Tuning: Customize pre-trained models for task-specific datasets.
  • Hyperparameter Optimization: Automate hyperparameter tuning.
  • Evaluation: Measure model performance with ease.
  • Hugging Face Integration: Deploy models effortlessly.
  • Flexibility: Support for various models and optimization methods.

Installation

Install via pip:

pip install fine-tune-optimizer

Or install from source:

git clone https://github.com/yourusername/FineTuneOptimizer.git
cd FineTuneOptimizer
pip install -r requirements.txt

Usage

Fine-Tuning a Model

from fine_tune_optimizer import FineTuner

# Initialize FineTuner
fine_tuner = FineTuner(model_name='bert-base-uncased')

# Load dataset
train_dataset, test_dataset = load_data('your_dataset_path')

# Fine-tune the model
fine_tuner.train(train_dataset, epochs=3, batch_size=16)

# Evaluate the model
metrics = fine_tuner.evaluate(test_dataset)
print(metrics)

Hyperparameter Optimization

from fine_tune_optimizer import HyperOptimizer

# Initialize HyperOptimizer
hyper_optimizer = HyperOptimizer(model_name='bert-base-uncased')

# Optimize hyperparameters
best_params = hyper_optimizer.optimize(train_dataset)

# Apply the best parameters
fine_tuner.apply_best_params(best_params)

Model Evaluation

metrics = fine_tuner.evaluate(test_dataset)
print(metrics)

Contributing

Contributions are welcome! Please see the CONTRIBUTING.md file for details.

License

This project is licensed under the MIT License. See the LICENSE file for details.

---