Skip to content

A data analysis project using PostgreSQL and Jupyter Notebook for efficient data extraction, transformation, and analysis.

Notifications You must be signed in to change notification settings

carloscoronatax/postgresql-data-analytics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Data Analysis Project Using PostgreSQL and Jupyter Notebook

Created by; @carloscoronatax

Project Overview

This project performs data analysis by connecting PostgreSQL database with Jupyter Notebook. The analysis leverages Python's data manipulation libraries to extract insights from the data stored in a PostgreSQL database.

Note: This project is updating every day, but you can use the fundamentals right now.

Tech Stack

  • PostgreSQL: Database management system
  • Jupyter Notebook: Interactive computing environment

Setup Instructions

1. Environment Setup

# Install required packages
pip install pandas numpy psycopg2-binary sqlalchemy matplotlib seaborn jupyter

2. Database Connection

# PostgreSQL connection configuration
host = 'localhost'
database = 'postgres'
user = 'postgres'
password = 'your_password'

3. Project Structure

new_project/
├── notebook.ipynb           # Jupyter notebook
└── README.md

Data Analysis Process

1. Data Extraction

  • Connect to PostgreSQL database
  • Query and load tables into pandas DataFrames
  • Initial data inspection

2. Data Cleaning

  • Handle missing values
  • Remove duplicates
  • Format data types
  • Standardize values

3. Exploratory Data Analysis (EDA)

  • Statistical summaries
  • Data distribution analysis
  • Correlation analysis
  • Trend identification

4. Visualization

  • Create charts and graphs
  • Generate insights
  • Document findings

Usage Example

# Connect to database and load data
engine = create_postgres_connection(
    host='localhost',
    database='postgres',
    user='postgres',
    password='your_password'
)

# Read data into DataFrame
df = read_table_to_dataframe(engine, 'your_table')

# Basic analysis
print("Dataset Shape:", df.shape)
print("\nData Types:\n", df.dtypes)
print("\nSummary Statistics:\n", df.describe())

Data Security

  • Keep database credentials secure
  • Use environment variables for sensitive information
  • Don't commit credentials to version control

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

MIT License

Contact

Created and Maintained by: Carlos Corona

GitHub: @carloscoronatax

About

A data analysis project using PostgreSQL and Jupyter Notebook for efficient data extraction, transformation, and analysis.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published