Created by; @carloscoronatax
This project performs data analysis by connecting PostgreSQL database with Jupyter Notebook. The analysis leverages Python's data manipulation libraries to extract insights from the data stored in a PostgreSQL database.
Note: This project is updating every day, but you can use the fundamentals right now.
- PostgreSQL: Database management system
- Jupyter Notebook: Interactive computing environment
# Install required packages
pip install pandas numpy psycopg2-binary sqlalchemy matplotlib seaborn jupyter
# PostgreSQL connection configuration
host = 'localhost'
database = 'postgres'
user = 'postgres'
password = 'your_password'
new_project/
├── notebook.ipynb # Jupyter notebook
└── README.md
- Connect to PostgreSQL database
- Query and load tables into pandas DataFrames
- Initial data inspection
- Handle missing values
- Remove duplicates
- Format data types
- Standardize values
- Statistical summaries
- Data distribution analysis
- Correlation analysis
- Trend identification
- Create charts and graphs
- Generate insights
- Document findings
# Connect to database and load data
engine = create_postgres_connection(
host='localhost',
database='postgres',
user='postgres',
password='your_password'
)
# Read data into DataFrame
df = read_table_to_dataframe(engine, 'your_table')
# Basic analysis
print("Dataset Shape:", df.shape)
print("\nData Types:\n", df.dtypes)
print("\nSummary Statistics:\n", df.describe())
- Keep database credentials secure
- Use environment variables for sensitive information
- Don't commit credentials to version control
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
MIT License
Created and Maintained by: Carlos Corona
GitHub: @carloscoronatax