Implementation accompanying paper:
Everybody Dance Now
Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros
UC Berkeley
hosted on arXiv
pip install dominate
- Clone this repository
git clone https://github.com/carolineec/EverybodyDanceNow
We ran our code on a 12GB NVIDIA GPU. Multi-GPU and CPU setups are currently untested.
We follow similar stage training as in pix2pixHD. We first train a "global" stage model at 512x256 resolution
# train a model at 512x256 resolution
python train_fullts.py \
--name MY_MODEL_NAME_global \
--dataroot MY_TRAINING_DATASET \
--checkpoints_dir WHERE_TO_SAVE_CHECKPOINTS \
--loadSize 512 \
--no_instance \
--no_flip \
--tf_log \
--label_nc 6
Followed by a "local" stage model with 1024x512 resolution.
# train a model at 1024x512 resolution
python train_fullts.py \
--name MY_MODEL_NAME_local \
--dataroot MY_TRAINING_DATASET \
--checkpoints_dir WHERE_TO_SAVE_CHECKPOINTS \
--load_pretrain MY_MODEL_NAME_global \
--netG local \
--ngf 32 \
--num_D 3 \
--resize_or_crop none \
--no_instance \
--no_flip \
--tf_log \
--label_nc 6
We then can apply another stage with a separate GAN focused on the face region.
# train a model specialized to the face region
python train_fullts.py \
--name MY_MODEL_NAME_face \
--dataroot MY_TRAINING_DATASET \
--load_pretrain MY_MODEL_NAME_local \
--checkpoints_dir WHERE_TO_SAVE_CHECKPOINTS \
--face_discrim \
--face_generator \
--faceGtype global \
--niter_fix_main 10 \
--netG local \
--ngf 32 \
--num_D 3 \
--resize_or_crop none \
--no_instance \
--no_flip \
--tf_log \
--label_nc 6
The full checkpoint will be loaded from --checkpoints_dir/--name (i.e. if flags: "--name foo \ ... --checkpoints_dir bar "" are included, checkpoints will be loaded from foo/bar) Replace --howmany flag with an upper bound on how many test examples you have
# test model at 512x256 resolution
python test_fullts.py \
--name MY_MODEL_NAME_global \
--dataroot MY_TEST_DATASET \
--checkpoints_dir CHECKPOINT_FILE_LOCATION \
--results_dir WHERE_TO_SAVE_RESULTS \
--loadSize 512 \
--no_instance \
--how_many 10000 \
--label_nc 6
# test model at 1024x512 resolution
python test_fullts.py \
--name MY_MODEL_NAME_local \
--dataroot MY_TEST_DATASET \
--checkpoints_dir CHECKPOINT_FILE_LOCATION \
--results_dir WHERE_TO_SAVE_RESULTS \
--netG local \
--ngf 32 \
--resize_or_crop none \
--no_instance \
--how_many 10000 \
--label_nc 6
# test model at 1024x512 resolution with face GAN
python test_fullts.py \
--name MY_MODEL_NAME_face \
--dataroot MY_TEST_DATASET \
--checkpoints_dir CHECKPOINT_FILE_LOCATION \
--results_dir WHERE_TO_SAVE_RESULTS \
--face_generator \
--faceGtype global \
--netG local \
--ngf 32 \
--resize_or_crop none \
--no_instance \
--how_many 10000 \
--label_nc 6
We also provide code for creating both training and testing datasets (including global pose normalization) in the data_prep folder. See the sample_data folder for examples on how to prepare the code for training. Note the original_img is not necessary at test time and is provided only for reference.
Our dataset preparation code is based on output formats from OpenPose and currently supports the COCO, BODY_23, and BODY_25 pose output format as well as hand and face keypoints. To install and run OpenPose please follow the directions at the OpenPose repository.
will prepare a train dataset with subfolders
- train_label (contains 1024x512 inputs)
- train_img (contains 1024x512 targets)
- train_facetexts128 (contains face 128x128 bounding box coordinates in .txt files) No smoothing
python graph_train.py \
--keypoints_dir /data/scratch/caroline/keypoints/jason_keys \
--frames_dir /data/scratch/caroline/frames/jason_frames \
--save_dir /data/scratch/caroline/savefolder \
--spread 4000 25631 1 \
--facetexts
will prepare a dataset with averaged smoothed keypoints with subfolders (usually for validation)
- test_label (contains 1024x512 inputs)
- test_img (contains 1024x512 targets)
- test_factexts128 (contains face 128x128 bounding box coordinates in .txt files)
python graph_avesmooth.py \
--keypoints_dir /data/scratch/caroline/keypoints/wholedance_keys \
--frames_dir /data/scratch/caroline/frames/wholedance \
--save_dir /data/scratch/caroline/savefolder \
--spread 500 29999 4 \
--facetexts
will prepare a dataset with global pose normalization + median smoothing
- test_label (contains 1024x512 inputs)
- test_img (contains 1024x512 targets)
- test_factexts128 (contains face 128x128 bounding box coordinates in .txt files)
python graph_posenorm.py \
--target_keypoints /data/scratch/caroline/keypoints/wholedance_keys \
--source_keypoints /data/scratch/caroline/keypoints/dubstep_keypointsFOOT \
--target_shape 1080 1920 3 \
--source_shape 1080 1920 3 \
--source_frames /data/scratch/caroline/frames/dubstep_frames \
--results /data/scratch/caroline/savefolder \
--target_spread 30003 178780 \
--source_spread 200 4800 \
--calculate_scale_translation
--facetexts
If you find this work useful please use the following citation:
@inproceedings{chan2019dance,
title={Everybody Dance Now},
author={Chan, Caroline and Ginosar, Shiry and Zhou, Tinghui and Efros, Alexei A},
booktitle={IEEE International Conference on Computer Vision (ICCV)},
year={2019}
}
Model code adapted from pix2pixHD and pytorch-CycleGAN-and-pix2pix
Data Preparation code adapted from Realtime_Multi-Person_Pose_Estimation
Data Preparation code based on outputs from OpenPose