Skip to content

Commit

Permalink
Improvements to flat vector search (#2512)
Browse files Browse the repository at this point in the history
+ Two separate codecs: AnseriniLucene99FlatVectorFormat and AnseriniLucene99ScalarQuantizedVectorsFormat.
+ Hooked everything up to regressions for all BEIR datasets: {cached, ONNX} x {original, int8}.
  • Loading branch information
lintool authored Jun 3, 2024
1 parent a1386fb commit 6093e30
Show file tree
Hide file tree
Showing 608 changed files with 22,461 additions and 503 deletions.
111 changes: 76 additions & 35 deletions README.md

Large diffs are not rendered by default.

134 changes: 132 additions & 2 deletions docs/regressions.md

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ After download and unpacking the corpora, the `run_regression.py` command above

## Indexing

Sample indexing command, building HNSW indexes:
Sample indexing command, building quantized HNSW indexes:

```
bin/run.sh io.anserini.index.IndexHnswDenseVectors \
Expand Down
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Anserini Regressions: BEIR (v1.0.0) — ArguAna

**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with quantized HNSW indexes (using pre-encoded queries)
**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with quantized HNSW indexes (using cached queries)

This page describes regression experiments, integrated into Anserini's regression testing framework, using the [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model on [BEIR (v1.0.0) — ArguAna](http://beir.ai/), as described in the following paper:

> Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. [C-Pack: Packaged Resources To Advance General Chinese Embedding.](https://arxiv.org/abs/2309.07597) _arXiv:2309.07597_, 2023.
In these experiments, we are using pre-encoded queries (i.e., cached results of query encoding).
In these experiments, we are using cached queries (i.e., cached results of query encoding).

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/beir-v1.0.0-arguana-bge-base-en-v1.5-hnsw-int8.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/beir-v1.0.0-arguana-bge-base-en-v1.5-hnsw-int8.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.
Expand All @@ -29,7 +29,7 @@ After download and unpacking the corpora, the `run_regression.py` command above

## Indexing

Sample indexing command, building HNSW indexes:
Sample indexing command, building quantized HNSW indexes:

```
bin/run.sh io.anserini.index.IndexHnswDenseVectors \
Expand Down
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Anserini Regressions: BEIR (v1.0.0) — ArguAna

**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with HNSW indexes (using pre-encoded queries)
**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with HNSW indexes (using cached queries)

This page describes regression experiments, integrated into Anserini's regression testing framework, using the [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model on [BEIR (v1.0.0) — ArguAna](http://beir.ai/), as described in the following paper:

> Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. [C-Pack: Packaged Resources To Advance General Chinese Embedding.](https://arxiv.org/abs/2309.07597) _arXiv:2309.07597_, 2023.
In these experiments, we are using pre-encoded queries (i.e., cached results of query encoding).
In these experiments, we are using cached queries (i.e., cached results of query encoding).

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/beir-v1.0.0-arguana-bge-base-en-v1.5-hnsw.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/beir-v1.0.0-arguana-bge-base-en-v1.5-hnsw.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Anserini Regressions: BEIR (v1.0.0) — ArguAna

**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with quantized flat indexes (using cached queries)

This page describes regression experiments, integrated into Anserini's regression testing framework, using the [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model on [BEIR (v1.0.0) — ArguAna](http://beir.ai/), as described in the following paper:

> Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. [C-Pack: Packaged Resources To Advance General Chinese Embedding.](https://arxiv.org/abs/2309.07597) _arXiv:2309.07597_, 2023.
In these experiments, we are using cached queries (i.e., cached results of query encoding).

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/beir-v1.0.0-arguana.bge-base-en-v1.5.flat-int8.cached.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/beir-v1.0.0-arguana.bge-base-en-v1.5.flat-int8.cached.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression beir-v1.0.0-arguana.bge-base-en-v1.5.flat-int8.cached
```

All the BEIR corpora, encoded by the BGE-base-en-v1.5 model, are available for download:

```bash
wget https://rgw.cs.uwaterloo.ca/pyserini/data/beir-v1.0.0-bge-base-en-v1.5.tar -P collections/
tar xvf collections/beir-v1.0.0-bge-base-en-v1.5.tar -C collections/
```

The tarball is 294 GB and has MD5 checksum `e4e8324ba3da3b46e715297407a24f00`.
After download and unpacking the corpora, the `run_regression.py` command above should work without any issue.

## Indexing

Sample indexing command, building quantized flat indexes:

```
bin/run.sh io.anserini.index.IndexCollection \
-collection JsonDenseVectorCollection \
-input /path/to/beir-v1.0.0.bge-base-en-v1.5 \
-generator DenseVectorDocumentGenerator \
-index indexes/lucene-flat-int8.beir-v1.0.0-arguana.bge-base-en-v1.5/ \
-threads 16 -quantize.int8 \
>& logs/log.beir-v1.0.0.bge-base-en-v1.5 &
```

The path `/path/to/beir-v1.0.0.bge-base-en-v1.5/` should point to the corpus downloaded above.

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-flat-int8.beir-v1.0.0-arguana.bge-base-en-v1.5/ \
-topics tools/topics-and-qrels/topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.gz \
-topicReader JsonStringVector \
-output runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt \
-generator VectorQueryGenerator -topicField vector -removeQuery -threads 16 -hits 1000 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **nDCG@10** | **BGE-base-en-v1.5**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| BEIR (v1.0.0): ArguAna | 0.6361 |
| **R@100** | **BGE-base-en-v1.5**|
| BEIR (v1.0.0): ArguAna | 0.9915 |
| **R@1000** | **BGE-base-en-v1.5**|
| BEIR (v1.0.0): ArguAna | 0.9964 |

The above figures are from running brute-force search with cached queries on non-quantized indexes.
With quantized indexes, results may differ slightly, but the nDCG@10 score should generally be within 0.004 of the result reported above (with a small number of outliers).
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Anserini Regressions: BEIR (v1.0.0) — ArguAna

**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with quantized flat indexes (using ONNX for on-the-fly query encoding)

This page describes regression experiments, integrated into Anserini's regression testing framework, using the [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model on [BEIR (v1.0.0) — ArguAna](http://beir.ai/), as described in the following paper:

> Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. [C-Pack: Packaged Resources To Advance General Chinese Embedding.](https://arxiv.org/abs/2309.07597) _arXiv:2309.07597_, 2023.
In these experiments, we are using ONNX to perform query encoding on the fly.

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/beir-v1.0.0-arguana.bge-base-en-v1.5.flat-int8.onnx.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/beir-v1.0.0-arguana.bge-base-en-v1.5.flat-int8.onnx.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression beir-v1.0.0-arguana.bge-base-en-v1.5.flat-int8.onnx
```

All the BEIR corpora, encoded by the BGE-base-en-v1.5 model, are available for download:

```bash
wget https://rgw.cs.uwaterloo.ca/pyserini/data/beir-v1.0.0-bge-base-en-v1.5.tar -P collections/
tar xvf collections/beir-v1.0.0-bge-base-en-v1.5.tar -C collections/
```

The tarball is 294 GB and has MD5 checksum `e4e8324ba3da3b46e715297407a24f00`.
After download and unpacking the corpora, the `run_regression.py` command above should work without any issue.

## Indexing

Sample indexing command, building quantized flat indexes:

```
bin/run.sh io.anserini.index.IndexCollection \
-collection JsonDenseVectorCollection \
-input /path/to/beir-v1.0.0.bge-base-en-v1.5 \
-generator DenseVectorDocumentGenerator \
-index indexes/lucene-flat-int8.beir-v1.0.0-arguana.bge-base-en-v1.5/ \
-threads 16 -quantize.int8 \
>& logs/log.beir-v1.0.0.bge-base-en-v1.5 &
```

The path `/path/to/beir-v1.0.0.bge-base-en-v1.5/` should point to the corpus downloaded above.

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-flat-int8.beir-v1.0.0-arguana.bge-base-en-v1.5/ \
-topics tools/topics-and-qrels/topics.beir-v1.0.0-arguana.test.tsv.gz \
-topicReader TsvString \
-output runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8-onnx.topics.beir-v1.0.0-arguana.test.txt \
-generator VectorQueryGenerator -topicField vector -removeQuery -threads 16 -hits 1000 -encoder BgeBaseEn15 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8-onnx.topics.beir-v1.0.0-arguana.test.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8-onnx.topics.beir-v1.0.0-arguana.test.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat-int8-onnx.topics.beir-v1.0.0-arguana.test.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **nDCG@10** | **BGE-base-en-v1.5**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| BEIR (v1.0.0): ArguAna | 0.6361 |
| **R@100** | **BGE-base-en-v1.5**|
| BEIR (v1.0.0): ArguAna | 0.9915 |
| **R@1000** | **BGE-base-en-v1.5**|
| BEIR (v1.0.0): ArguAna | 0.9964 |

The above figures are from running brute-force search with cached queries on non-quantized indexes.
With quantized indexes and on-the-fly ONNX query encoding, results may differ slightly, but the nDCG@10 score should generally be within 0.005 of the result reported above (with a small number of outliers).
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# Anserini Regressions: BEIR (v1.0.0) — ArguAna

**Model**: [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with flat indexes (using cached queries)

This page describes regression experiments, integrated into Anserini's regression testing framework, using the [BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) model on [BEIR (v1.0.0) — ArguAna](http://beir.ai/), as described in the following paper:

> Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. [C-Pack: Packaged Resources To Advance General Chinese Embedding.](https://arxiv.org/abs/2309.07597) _arXiv:2309.07597_, 2023.
In these experiments, we are using cached queries (i.e., cached results of query encoding).

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/beir-v1.0.0-arguana.bge-base-en-v1.5.flat.cached.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/beir-v1.0.0-arguana.bge-base-en-v1.5.flat.cached.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression beir-v1.0.0-arguana.bge-base-en-v1.5.flat.cached
```

All the BEIR corpora, encoded by the BGE-base-en-v1.5 model, are available for download:

```bash
wget https://rgw.cs.uwaterloo.ca/pyserini/data/beir-v1.0.0-bge-base-en-v1.5.tar -P collections/
tar xvf collections/beir-v1.0.0-bge-base-en-v1.5.tar -C collections/
```

The tarball is 294 GB and has MD5 checksum `e4e8324ba3da3b46e715297407a24f00`.
After download and unpacking the corpora, the `run_regression.py` command above should work without any issue.

## Indexing

Sample indexing command, building flat indexes:

```
bin/run.sh io.anserini.index.IndexCollection \
-collection JsonDenseVectorCollection \
-input /path/to/beir-v1.0.0.bge-base-en-v1.5 \
-generator DenseVectorDocumentGenerator \
-index indexes/lucene-flat.beir-v1.0.0-arguana.bge-base-en-v1.5/ \
-threads 16 \
>& logs/log.beir-v1.0.0.bge-base-en-v1.5 &
```

The path `/path/to/beir-v1.0.0.bge-base-en-v1.5/` should point to the corpus downloaded above.

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-flat.beir-v1.0.0-arguana.bge-base-en-v1.5/ \
-topics tools/topics-and-qrels/topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.gz \
-topicReader JsonStringVector \
-output runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt \
-generator VectorQueryGenerator -topicField vector -removeQuery -threads 16 -hits 1000 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.beir-v1.0.0-arguana.test.txt runs/run.beir-v1.0.0.bge-base-en-v1.5.bge-flat.topics.beir-v1.0.0-arguana.test.bge-base-en-v1.5.jsonl.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **nDCG@10** | **BGE-base-en-v1.5**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| BEIR (v1.0.0): ArguAna | 0.6361 |
| **R@100** | **BGE-base-en-v1.5**|
| BEIR (v1.0.0): ArguAna | 0.9915 |
| **R@1000** | **BGE-base-en-v1.5**|
| BEIR (v1.0.0): ArguAna | 0.9964 |

Note that since we're running brute-force search, the results should be reproducible _exactly_.
Loading

0 comments on commit 6093e30

Please sign in to comment.