Skip to content

Commit

Permalink
Add regressions for MS MARCO V2.1 corpora: document + segmented docum…
Browse files Browse the repository at this point in the history
…ent (#2467)
  • Loading branch information
lintool authored Apr 27, 2024
1 parent 2275d7e commit e6b7ea2
Show file tree
Hide file tree
Showing 33 changed files with 2,539 additions and 0 deletions.
16 changes: 16 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,22 @@ See individual pages for details.
| [MS MARCO V2 doc: uniCOIL (noexp)](https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/data/msmarco_v2_doc_segmented_unicoil_noexp_0shot_v2.tar) | 55 GB | `97ba262c497164de1054f357caea0c63` |
| [MS MARCO V2 doc: uniCOIL (d2q-T5)](https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/data/msmarco_v2_doc_segmented_unicoil_0shot_v2.tar) | 72 GB | `c5639748c2cbad0152e10b0ebde3b804` |

</details>
<details>
<summary>MS MARCO V2.1 Document Regressions</summary>

### MS MARCO V2.1 Document Regressions

The MS MARCO V2.1 corpora were derived from the V2 corpora for the TREC 2024 RAG Track.
The experiments below capture topics and qrels originally targeted at the V2 corpora, but have been "projected" over to the V2.1 corpora.

| | dev | DL21 | DL22 | DL23 | RAGgy dev |
|-----------------------------------------|:---------------------------------------------------------------:|:--------------------------------------------------------------------:|:--------------------------------------------------------------------:|:--------------------------------------------------------------------:|:------------------------------------------------------------------:|
| **Unsupervised Lexical, Complete Doc** | | | | | |
| baselines | [+](docs/regressions/regressions-msmarco-v2.1-doc.md) | [+](docs/regressions/regressions-dl21-doc-msmarco-v2.1.md) | [+](docs/regressions/regressions-dl22-doc-msmarco-v2.1.md) | [+](docs/regressions/regressions-dl23-doc-msmarco-v2.1.md) | [+](docs/regressions/regressions-rag24-doc-raggy-dev.md) |
| **Unsupervised Lexical, Segmented Doc** | | | | | |
| baselines | [+](docs/regressions/regressions-msmarco-v2.1-doc-segmented.md) | [+](docs/regressions/regressions-dl21-doc-segmented-msmarco-v2.1.md) | [+](docs/regressions/regressions-dl22-doc-segmented-msmarco-v2.1.md) | [+](docs/regressions/regressions-dl23-doc-segmented-msmarco-v2.1.md) | [+](docs/regressions/regressions-rag24-doc-segmented-raggy-dev.md) |

</details>
<details>
<summary>BEIR (v1.0.0) Regressions</summary>
Expand Down
21 changes: 21 additions & 0 deletions docs/regressions.md
Original file line number Diff line number Diff line change
Expand Up @@ -239,6 +239,27 @@ nohup python src/main/python/run_regression.py --index --verify --search --regre
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc-segmented.unicoil-0shot-v2 >& logs/log.dl23-doc-segmented.unicoil-0shot-v2.txt &
```

</details>
<details>
<summary>MS MARCO V2.1 + RAG24 regressions</summary>

```bash
nohup python src/main/python/run_regression.py --index --verify --search --regression msmarco-v2.1-doc >& logs/log.msmarco-v2.1-doc.txt &
nohup python src/main/python/run_regression.py --index --verify --search --regression msmarco-v2.1-doc-segmented >& logs/log.msmarco-v2.1-doc-segmented.txt &

nohup python src/main/python/run_regression.py --index --verify --search --regression dl21-doc-msmarco-v2.1 >& logs/log.dl21-doc-msmarco-v2.1.txt &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl21-doc-segmented-msmarco-v2.1 >& logs/log.dl21-doc-segmented-msmarco-v2.1.txt &

nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-msmarco-v2.1 >& logs/log.dl22-doc-msmarco-v2.1.txt &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl22-doc-segmented-msmarco-v2.1 >& logs/log.dl22-doc-segmented-msmarco-v2.1.txt &

nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc-msmarco-v2.1 >& logs/log.dl23-doc-msmarco-v2.1.txt &
nohup python src/main/python/run_regression.py --index --verify --search --regression dl23-doc-segmented-msmarco-v2.1 >& logs/log.dl23-doc-segmented-msmarco-v2.1.txt &

nohup python src/main/python/run_regression.py --index --verify --search --regression rag24-doc-raggy-dev >& logs/log.rag24-doc-raggy-dev.txt &
nohup python src/main/python/run_regression.py --index --verify --search --regression rag24-doc-segmented-raggy-dev >& logs/log.rag24-doc-segmented-raggy-dev.txt &
```

</details>
<details>
<summary>BEIR (v1.0.0): BGE-base-en-v1.5</summary>
Expand Down
101 changes: 101 additions & 0 deletions docs/regressions/regressions-dl21-doc-msmarco-v2.1.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# Anserini Regressions: TREC 2021 DL Track on V2.1 Corpus

**Models**: various bag-of-words approaches on complete documents

This page describes experiments, integrated into Anserini's regression testing framework, on the [TREC 2021 Deep Learning Track document ranking task](https://trec.nist.gov/data/deep2021.html) using the MS MARCO V2.1 document corpus, which was derived from the MS MARCO V2 document corpus and prepared for the TREC 2024 RAG Track.

Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).

Here, we cover bag-of-words baselines where each document in the MS MARCO V2.1 document corpus is treated as a unit of indexing.

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/dl21-doc-msmarco-v2.1.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/dl21-doc-msmarco-v2.1.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression dl21-doc-msmarco-v2.1
```

## Indexing

Typical indexing command:

```
bin/run.sh io.anserini.index.IndexCollection \
-collection MsMarcoV2DocCollection \
-input /path/to/msmarco-v2.1-doc \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-inverted.msmarco-v2.1-doc/ \
-threads 24 -storeRaw \
>& logs/log.msmarco-v2.1-doc &
```

The setting of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus.

For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
The regression experiments here evaluate on the 57 topics for which NIST has provided judgments as part of the [TREC 2021 Deep Learning Track](https://trec.nist.gov/data/deep2021.html), but projected over to the V2.1 version of the corpus.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc/ \
-topics tools/topics-and-qrels/topics.dl21.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2.1-doc.bm25-default.topics.dl21.txt \
-hits 1000 -bm25 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc/ \
-topics tools/topics-and-qrels/topics.dl21.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2.1-doc.bm25-default+rm3.topics.dl21.txt \
-hits 1000 -bm25 -rm3 -collection MsMarcoV2DocCollection &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc/ \
-topics tools/topics-and-qrels/topics.dl21.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2.1-doc.bm25-default+rocchio.topics.dl21.txt \
-hits 1000 -bm25 -rocchio -collection MsMarcoV2DocCollection &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default.topics.dl21.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default.topics.dl21.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default.topics.dl21.txt
bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default.topics.dl21.txt
bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rocchio.topics.dl21.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rocchio.topics.dl21.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rocchio.topics.dl21.txt
bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc.bm25-default+rocchio.topics.dl21.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.2281 | 0.2652 | 0.2678 |
| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.8466 | 0.8044 | 0.8030 |
| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.5183 | 0.5324 | 0.5393 |
| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.3502 | 0.3727 | 0.3867 |
| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.6915 | 0.7623 | 0.7623 |
107 changes: 107 additions & 0 deletions docs/regressions/regressions-dl21-doc-segmented-msmarco-v2.1.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
# Anserini Regressions: TREC 2021 DL Track on V2.1 Corpus

**Models**: various bag-of-words approaches on segmented documents

This page describes experiments, integrated into Anserini's regression testing framework, on the [TREC 2021 Deep Learning Track document ranking task](https://trec.nist.gov/data/deep2021.html) using the MS MARCO V2.1 _segmented_ document corpus, which was derived from the MS MARCO V2 segmented document corpus and prepared for the TREC 2024 RAG Track.

Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).

Here, we cover bag-of-words baselines where each _segment_ in the MS MARCO V2.1 segmented document corpus is treated as a unit of indexing.

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/dl21-doc-segmented-msmarco-v2.1.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/dl21-doc-segmented-msmarco-v2.1.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression dl21-doc-segmented-msmarco-v2.1
```

## Indexing

Typical indexing command:

```
bin/run.sh io.anserini.index.IndexCollection \
-collection MsMarcoV2DocCollection \
-input /path/to/msmarco-v2.1-doc-segmented \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \
-threads 24 -storeRaw \
>& logs/log.msmarco-v2.1-doc-segmented &
```

The value of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](../../docs/experiments-msmarco-v2.md) for additional details.

For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
The regression experiments here evaluate on the 57 topics for which NIST has provided judgments as part of the [TREC 2021 Deep Learning Track](https://trec.nist.gov/data/deep2021.html), but projected over to the V2.1 version of the corpus.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \
-topics tools/topics-and-qrels/topics.dl21.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.dl21.txt \
-bm25 -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \
-topics tools/topics-and-qrels/topics.dl21.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.dl21.txt \
-bm25 -rm3 -collection MsMarcoV2DocCollection -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented/ \
-topics tools/topics-and-qrels/topics.dl21.txt \
-topicReader TsvInt \
-output runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.dl21.txt \
-bm25 -rocchio -collection MsMarcoV2DocCollection -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.dl21.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.dl21.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.dl21.txt
bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default.topics.dl21.txt
bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rm3.topics.dl21.txt
bin/trec_eval -c -M 100 -m map tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.dl21.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.dl21.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.dl21.txt
bin/trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 tools/topics-and-qrels/qrels.dl21-doc-msmarco-v2.1.txt runs/run.msmarco-v2.1-doc-segmented.bm25-default+rocchio.topics.dl21.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **MAP@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
|:-------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.2609 | 0.3084 | 0.3123 |
| **MRR@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.9026 | 0.9289 | 0.9289 |
| **nDCG@10** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.5778 | 0.6137 | 0.6048 |
| **R@100** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.3811 | 0.4200 | 0.4260 |
| **R@1000** | **BM25 (default)**| **+RM3** | **+Rocchio**|
| [DL21 (Doc)](https://microsoft.github.io/msmarco/TREC-Deep-Learning) | 0.7115 | 0.7839 | 0.7924 |

Some of these regressions correspond to official TREC 2021 Deep Learning Track "baseline" submissions:

+ `dseg_bm25` = BM25 (default), `k1=0.9`, `b=0.4`
+ `dseg_bm25rm3` = BM25 (default) + RM3, `k1=0.9`, `b=0.4`
Loading

0 comments on commit e6b7ea2

Please sign in to comment.