Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Regressions for the TREC 2019 Deep Learning Track (Passage Ranking Task) #997

Merged
merged 4 commits into from
Feb 25, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,7 @@ Note that these regressions capture the "out of the box" experience, based on [_
+ [Regressions for the MS MARCO Passage Retrieval Task with doc2query expansion](docs/regressions-msmarco-passage-doc2query.md)
+ [Regressions for the MS MARCO Passage Retrieval Task with docTTTTTquery expansion](docs/regressions-msmarco-passage-docTTTTTquery.md)
+ [Regressions for the MS MARCO Document Retrieval](docs/regressions-msmarco-doc.md)
+ [Regressions for the TREC 2019 Deep Learning Track (Passage Ranking Task)](docs/regressions-dl19-passage.md)
+ [Regressions for the TREC 2019 Deep Learning Track (Document Ranking Task)](docs/regressions-dl19-doc.md)
+ [Regressions for NTCIR-8 ACLIA (IR4QA subtask, Monolingual Chinese)](docs/regressions-ntcir8-zh.md)
+ [Regressions for CLEF 2006 Monolingual French](docs/regressions-clef06-fr.md)
Expand Down
6 changes: 3 additions & 3 deletions docs/regressions-dl19-doc.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Anserini: Regressions for [DL19 (Document)](https://github.com/microsoft/TREC-2019-Deep-Learning)

This page documents experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Document Ranking Task) on the MS MARCO document collection using relevance judgments from NIST.
This page describes experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Document Ranking Task) on the MS MARCO document collection using relevance judgments from NIST.
Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).
For additional instructions on working with MS MARCO document collection, refer to [this page](experiments-msmarco-doc.md).

Expand All @@ -13,7 +13,7 @@ Typical indexing command:

```
nohup sh target/appassembler/bin/IndexCollection -collection TrecCollection -input /path/to/dl19-doc \
-index lucene-index.msmarco-doc.pos+docvectors+rawdocs -generator LuceneDocumentGenerator -threads 1 \
-index lucene-index.msmacro-doc.pos+docvectors+rawdocs -generator LuceneDocumentGenerator -threads 1 \
-storePositions -storeDocvectors -storeRawDocs >& log.dl19-doc.pos+docvectors+rawdocs &
```

Expand All @@ -24,7 +24,7 @@ For additional details, see explanation of [common indexing options](common-inde
## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 43 topics for which NIST has provided judgmen as part of the TREC 2019 Deep Learning Track.
The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track.
The original data can be found [here](https://trec.nist.gov/data/deep2019.html).

After indexing has completed, you should be able to perform retrieval as follows:
Expand Down
116 changes: 116 additions & 0 deletions docs/regressions-dl19-passage.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Anserini: Regressions for [DL19 (Passage)](https://github.com/microsoft/TREC-2019-Deep-Learning)

This page describes experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Passage Ranking Task) on the MS MARCO passage collection using relevance judgments from NIST.
Note that the NIST relevance judgments provide far more relevant passages per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).
For additional instructions on working with MS MARCO passage collection, refer to [this page](experiments-msmarco-passage.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/dl19-passage.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/dl19-passage.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
nohup sh target/appassembler/bin/IndexCollection -collection JsonCollection -input /path/to/dl19-passage \
-index lucene-index.msmarco-passage.pos+docvectors+rawdocs -generator LuceneDocumentGenerator -threads 9 \
-storePositions -storeDocvectors -storeRawDocs >& log.dl19-passage.pos+docvectors+rawdocs &
```

The directory `/path/to/msmarco-passage/` should be a directory containing `jsonl` files converted from the official passage collection, which is in `tsv` format.
[This page](experiments-msmarco-passage.md) explains how to perform this conversion.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track.
The original data can be found [here](https://trec.nist.gov/data/deep2019.html).

After indexing has completed, you should be able to perform retrieval as follows:

```
nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -output run.dl19-passage.bm25-default.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -rm3 -output run.dl19-passage.bm25-default+rm3.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -axiom -axiom.deterministic -rerankCutoff 20 -output run.dl19-passage.bm25-default+ax.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -bm25prf -output run.dl19-passage.bm25-default+prf.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -output run.dl19-passage.bm25-tuned.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -rm3 -output run.dl19-passage.bm25-tuned+rm3.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -axiom -axiom.deterministic -rerankCutoff 20 -output run.dl19-passage.bm25-tuned+ax.topics.dl19-passage.txt &

nohup target/appassembler/bin/SearchCollection -index lucene-index.dl19-passage.pos+docvectors+rawdocs \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.dl19-passage.txt \
-bm25 -bm25.k1 0.82 -bm25.b 0.68 -bm25prf -output run.dl19-passage.bm25-tuned+prf.topics.dl19-passage.txt &
```

Evaluation can be performed using `trec_eval`:

```
eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default+rm3.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default+ax.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-default+prf.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned+rm3.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned+ax.topics.dl19-passage.txt

eval/trec_eval.9.0.4/trec_eval -m map -c -m ndcg_cut.10 -c -m recip_rank -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.dl19-passage.txt run.dl19-passage.bm25-tuned+prf.topics.dl19-passage.txt
```

## Effectiveness

With the above commands, you should be able to replicate the following results:

MAP | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.3773 | 0.4270 | 0.4651 | 0.4533 | 0.3766 | 0.4249 | 0.4722 | 0.4522 |


NDCG@10 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.5058 | 0.5180 | 0.5511 | 0.5372 | 0.4973 | 0.5231 | 0.5461 | 0.5536 |


RR | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.8245 | 0.8167 | 0.7736 | 0.8170 | 0.8457 | 0.8229 | 0.8218 | 0.8178 |


R@100 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.4531 | 0.4761 | 0.4995 | 0.4974 | 0.4603 | 0.4747 | 0.5065 | 0.4969 |


R@1000 | BM25 (Default)| +RM3 | +Ax | +PRF | BM25 (Tuned)| +RM3 | +Ax | +PRF |
:---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
[DL19 (Passage)](https://trec.nist.gov/data/deep2019.html)| 0.7389 | 0.7882 | 0.8129 | 0.7845 | 0.7384 | 0.7762 | 0.8094 | 0.7894 |

The setting "default" refers the default BM25 settings of `k1=0.9`, `b=0.4`, while "tuned" refers to the tuned setting of `k1=0.82`, `b=0.68` (see [this page](experiments-msmarco-passage.md) for more details about tuning).

4 changes: 2 additions & 2 deletions src/main/resources/docgen/templates/dl19-doc.template
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Anserini: Regressions for [DL19 (Document)](https://github.com/microsoft/TREC-2019-Deep-Learning)

This page documents experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Document Ranking Task) on the MS MARCO document collection using relevance judgments from NIST.
This page describes experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Document Ranking Task) on the MS MARCO document collection using relevance judgments from NIST.
Note that the NIST relevance judgments provide far more relevant documents per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).
For additional instructions on working with MS MARCO document collection, refer to [this page](experiments-msmarco-doc.md).

Expand All @@ -22,7 +22,7 @@ For additional details, see explanation of [common indexing options](common-inde
## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 43 topics for which NIST has provided judgmen as part of the TREC 2019 Deep Learning Track.
The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track.
The original data can be found [here](https://trec.nist.gov/data/deep2019.html).

After indexing has completed, you should be able to perform retrieval as follows:
Expand Down
48 changes: 48 additions & 0 deletions src/main/resources/docgen/templates/dl19-passage.template
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Anserini: Regressions for [DL19 (Passage)](https://github.com/microsoft/TREC-2019-Deep-Learning)

This page describes experiments, integrated into Anserini's regression testing framework, for the TREC 2019 Deep Learning Track (Passage Ranking Task) on the MS MARCO passage collection using relevance judgments from NIST.
Note that the NIST relevance judgments provide far more relevant passages per topic, unlike the "sparse" judgments provided by Microsoft (these are sometimes called "dense" judgments to emphasize this contrast).
For additional instructions on working with MS MARCO passage collection, refer to [this page](experiments-msmarco-passage.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/dl19-passage.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/dl19-passage.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
${index_cmds}
```

The directory `/path/to/msmarco-passage/` should be a directory containing `jsonl` files converted from the official passage collection, which is in `tsv` format.
[This page](experiments-msmarco-passage.md) explains how to perform this conversion.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 43 topics for which NIST has provided judgments as part of the TREC 2019 Deep Learning Track.
The original data can be found [here](https://trec.nist.gov/data/deep2019.html).

After indexing has completed, you should be able to perform retrieval as follows:

```
${ranking_cmds}
```

Evaluation can be performed using `trec_eval`:

```
${eval_cmds}
```

## Effectiveness

With the above commands, you should be able to replicate the following results:

${effectiveness}

The setting "default" refers the default BM25 settings of `k1=0.9`, `b=0.4`, while "tuned" refers to the tuned setting of `k1=0.82`, `b=0.68` (see [this page](experiments-msmarco-passage.md) for more details about tuning).

4 changes: 2 additions & 2 deletions src/main/resources/regression/dl19-doc.yaml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
---
name: msmarco-doc
name: msmacro-doc # Note, this is the name of the collection; this way we can share index with the msmarco regressions
index_command: target/appassembler/bin/IndexCollection
index_utils_command: target/appassembler/bin/IndexUtils
search_command: target/appassembler/bin/SearchCollection
Expand Down Expand Up @@ -66,7 +66,7 @@ input_roots:
- /store/ # on orca
- /scratch2/ # on damiano
input: collections/msmarco/doc/
index_path: indexes/lucene-index.msmarco-doc.pos+docvectors+rawdocs
index_path: lucene-index.msmarco-doc.pos+docvectors+rawdocs
index_stats:
documents: 3213835
documents (non-empty): 3213835
Expand Down
Loading