Skip to content

Commit

Permalink
Support Microsoft Phi 1.5 (vllm-project#1664)
Browse files Browse the repository at this point in the history
  • Loading branch information
maximzubkov authored Nov 16, 2023
1 parent 0874258 commit ff3ae55
Show file tree
Hide file tree
Showing 6 changed files with 320 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Phi-1.5 (`microsoft/phi-1_5`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)

Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ pandas # Required for Ray data.
pyarrow # Required for Ray data.
sentencepiece # Required for LLaMA tokenizer.
numpy
einops # Required for phi-1_5
torch >= 2.1.0
transformers >= 4.34.0 # Required for Mistral.
xformers >= 0.0.22.post7 # Required for CUDA 12.1.
Expand Down
1 change: 1 addition & 0 deletions tests/models/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
"EleutherAI/pythia-70m",
"bigscience/bloom-560m",
"mosaicml/mpt-7b",
"microsoft/phi-1_5",
]


Expand Down
1 change: 1 addition & 0 deletions vllm/model_executor/model_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
"MptForCausalLM": MPTForCausalLM,
"MPTForCausalLM": MPTForCausalLM,
"OPTForCausalLM": OPTForCausalLM,
"PhiForCausalLM": PhiForCausalLM,
"QWenLMHeadModel": QWenLMHeadModel,
"RWForCausalLM": FalconForCausalLM,
"YiForCausalLM": YiForCausalLM,
Expand Down
2 changes: 2 additions & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from vllm.model_executor.models.mistral import MistralForCausalLM
from vllm.model_executor.models.mpt import MPTForCausalLM
from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.models.phi_1_5 import PhiForCausalLM
from vllm.model_executor.models.qwen import QWenLMHeadModel
from vllm.model_executor.models.chatglm import ChatGLMForCausalLM
from vllm.model_executor.models.yi import YiForCausalLM
Expand All @@ -31,6 +32,7 @@
"LlamaForCausalLM",
"MPTForCausalLM",
"OPTForCausalLM",
"PhiForCausalLM",
"QWenLMHeadModel",
"MistralForCausalLM",
"YiForCausalLM",
Expand Down
314 changes: 314 additions & 0 deletions vllm/model_executor/models/phi_1_5.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
# coding=utf-8
# Adapted from
# https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_phi.py
# Copyright 2023 The vLLM team.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# BSD 3-Clause License
#
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Inference-only Phi-1.5 model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class PhiEmbedding(nn.Module):

def __init__(self, config: PretrainedConfig):
super().__init__()

self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)

def forward(self, input_ids: torch.LongTensor):
return self.wte(input_ids)


class PhiAttention(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads

tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)

# pylint: disable=C0103
self.Wqkv = QKVParallelLinear(
self.hidden_size,
self.head_size,
self.total_num_heads,
linear_method=linear_method,
)
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
linear_method=linear_method,
)

scaling = self.head_size**-0.5
rotary_dim = config.rotary_dim
assert rotary_dim % 2 == 0

# pylint: disable=C0301
# Refer to:
# https://huggingface.co/microsoft/phi-1_5/blob/d212a789620c380ff32ca1d1ee9943a777360987/modeling_phi.py#L518
rope_theta = 10000
max_position_embeddings = getattr(config, "n_positions", 2048)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_size,
scaling,
rotary_dim,
base=rope_theta,
max_position=max_position_embeddings)

def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.out_proj(attn_output)
return output


class PhiMLP(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()

n_inner = getattr(config, "n_inner", None)
n_inner = n_inner if n_inner is not None else 4 * config.hidden_size

self.fc1 = ColumnParallelLinear(
config.hidden_size,
n_inner,
linear_method=linear_method,
)
self.fc2 = RowParallelLinear(
n_inner,
config.hidden_size,
linear_method=linear_method,
)
self.act = get_act_fn(config.activation_function)

def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states


class PhiLayer(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.mixer = PhiAttention(config, linear_method)
self.mlp = PhiMLP(config, linear_method)

def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states


class PhiCausalLMHead(nn.Module):

def __init__(self, config: PretrainedConfig):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.linear = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
self.sampler = Sampler(config.vocab_size)

def forward(
self,
hidden_states: torch.Tensor,
input_metadata: InputMetadata,
):
hidden_states = self.ln(hidden_states)
next_tokens = self.sampler(self.linear.weight, hidden_states,
input_metadata, self.linear.bias)
return next_tokens


class PhiModel(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.linear_method = linear_method
self.embd = PhiEmbedding(config)
self.h = nn.ModuleList([
PhiLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.embd(input_ids)
for i in range(self.config.num_hidden_layers):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
return hidden_states


class PhiForCausalLM(nn.Module):

def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.linear_method = linear_method

self.transformer = PhiModel(config, linear_method)
self.lm_head = PhiCausalLMHead(config)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
lm_logits = self.lm_head(hidden_states, input_metadata)
return lm_logits

def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue

# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

0 comments on commit ff3ae55

Please sign in to comment.