-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Unit Test Cases For fill_stats.py added (#1012)
* Unit Test Cases For fill_stats.py added * Unit Test Cases Refined * Unit Test Cases Refined More * Unit Test Cases Refined * Unit Test Cases Refined * Unit Test Refined for test_fill_stats.py * Unit Test Cases Refined * Unit Test Refined for test_fill_stats.py * Unit Test Refined --------- Co-authored-by: Dan <31514660+DanilYachmenev@users.noreply.github.com> Co-authored-by: Samarth KaPatel <samarth.kapatel5@gmail.com>
- Loading branch information
1 parent
18670c5
commit 8ca212e
Showing
1 changed file
with
93 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
import logging | ||
|
||
import pandas as pd | ||
import pytz | ||
|
||
import core.finance.target_position_df_processing.fill_stats as cftpdpfst | ||
import helpers.hunit_test as hunitest | ||
|
||
_LOG = logging.getLogger(__name__) | ||
|
||
|
||
class Test_compute_fill_stats(hunitest.TestCase): | ||
def helper(self) -> pd.DataFrame: | ||
""" | ||
Create artificial target positions data for unit tests. | ||
""" | ||
data = { | ||
("holdings_notional", 1): [1000, 1200, 1100, 1300, 1400], | ||
("holdings_notional", 2): [800, 850, 870, 900, 950], | ||
("holdings_shares", 1): [10, 12, 11, 13, 14], | ||
("holdings_shares", 2): [8, 9, 8.5, 9.5, 10], | ||
("price", 1): [100, 105, 102, 108, 110], | ||
("price", 2): [50, 52, 51, 53, 54], | ||
("target_holdings_notional", 1): [950, 1150, 1050, 1250, 1350], | ||
("target_holdings_notional", 2): [780, 830, 850, 880, 930], | ||
("target_holdings_shares", 1): [9, 11, 10, 12, 13], | ||
("target_holdings_shares", 2): [7.5, 8.5, 8.2, 9.2, 9.5], | ||
("target_trades_shares", 1): [1, 2, -1, 2, 1], | ||
("target_trades_shares", 2): [0.5, 1, -0.3, 0.7, 0.5], | ||
} | ||
index = pd.date_range( | ||
start="2023-01-01", periods=5, freq="T", tz=pytz.UTC | ||
) | ||
columns = pd.MultiIndex.from_tuples(data.keys()) | ||
df = pd.DataFrame(data, index=index, columns=columns) | ||
return df | ||
|
||
def test_compute_fill_stats1(self) -> None: | ||
""" | ||
Check that fills are computed correctly. | ||
""" | ||
# Get target positions data sample. | ||
target_position_df = self.helper() | ||
fills_df = cftpdpfst.compute_fill_stats(target_position_df) | ||
# Define expected values. | ||
expected_length = 5 | ||
expected_column_names = [ | ||
("executed_trades_shares", 1), | ||
("executed_trades_shares", 2), | ||
("fill_rate", 1), | ||
("fill_rate", 2), | ||
("underfill_share_count", 1), | ||
("underfill_share_count", 2), | ||
("underfill_notional", 1), | ||
("underfill_notional", 2), | ||
("underfill_opportunity_cost_realized_notional", 1), | ||
("underfill_opportunity_cost_realized_notional", 2), | ||
("underfill_opportunity_cost_notional", 1), | ||
("underfill_opportunity_cost_notional", 2), | ||
("tracking_error_shares", 1), | ||
("tracking_error_shares", 2), | ||
("tracking_error_notional", 1), | ||
("tracking_error_notional", 2), | ||
("tracking_error_bps", 1), | ||
("tracking_error_bps", 2), | ||
("is_buy", 1), | ||
("is_buy", 2), | ||
("is_sell", 1), | ||
("is_sell", 2), | ||
("is_benchmark_profitable", 1), | ||
("is_benchmark_profitable", 2), | ||
] | ||
expected_column_unique_values = None | ||
expected_signature = r""" | ||
# df= | ||
index=[2023-01-01 00:00:00+00:00, 2023-01-01 00:04:00+00:00] | ||
columns=('executed_trades_shares', 1),('executed_trades_shares', 2),('fill_rate', 1),('fill_rate', 2),('underfill_share_count', 1),('underfill_share_count', 2),('underfill_notional', 1),('underfill_notional', 2),('underfill_opportunity_cost_realized_notional', 1),('underfill_opportunity_cost_realized_notional', 2),('underfill_opportunity_cost_notional', 1),('underfill_opportunity_cost_notional', 2),('tracking_error_shares', 1),('tracking_error_shares', 2),('tracking_error_notional', 1),('tracking_error_notional', 2),('tracking_error_bps', 1),('tracking_error_bps', 2),('is_buy', 1),('is_buy', 2),('is_sell', 1),('is_sell', 2),('is_benchmark_profitable', 1),('is_benchmark_profitable', 2) | ||
shape=(5, 24) | ||
executed_trades_shares fill_rate underfill_share_count underfill_notional underfill_opportunity_cost_realized_notional underfill_opportunity_cost_notional tracking_error_shares tracking_error_notional tracking_error_bps is_buy is_sell is_benchmark_profitable | ||
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | ||
2023-01-01 00:00:00+00:00 10.0 8.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN True True False False 1.0 1.0 | ||
2023-01-01 00:01:00+00:00 2.0 1.0 2.0 2.000000 -1.0 -0.5 -100.0 -25.0 NaN NaN 3.0 0.5 3.0 1.5 250.0 70.0 2631.578947 897.435897 True True False False -1.0 -1.0 | ||
2023-01-01 00:02:00+00:00 -1.0 -0.5 0.5 0.500000 1.0 0.5 105.0 26.0 3.0 0.5 6.0 1.0 0.0 0.0 -50.0 40.0 -434.782609 481.927711 False False True True -1.0 -1.0 | ||
2023-01-01 00:03:00+00:00 2.0 1.0 2.0 3.333333 -1.0 -0.7 -102.0 -35.7 6.0 1.0 2.0 0.7 3.0 1.3 250.0 50.0 2380.952381 588.235294 True True False False 1.0 1.0 | ||
2023-01-01 00:04:00+00:00 1.0 0.5 0.5 0.714286 1.0 0.2 108.0 10.6 2.0 0.7 NaN NaN 2.0 0.8 150.0 70.0 1200.000000 795.454545 True True False False NaN NaN | ||
""" | ||
self.check_df_output( | ||
fills_df, | ||
expected_length, | ||
expected_column_names, | ||
expected_column_unique_values, | ||
expected_signature, | ||
) |