-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtools.py
195 lines (181 loc) · 4.8 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import ImageDraw, Image
colors = [
(39, 129, 113),
(164, 80, 133),
(83, 122, 114),
(99, 81, 172),
(95, 56, 104),
(37, 84, 86),
(14, 89, 122),
(80, 7, 65),
(10, 102, 25),
(90, 185, 109),
(106, 110, 132),
(169, 158, 85),
(188, 185, 26),
(103, 1, 17),
(82, 144, 81),
(92, 7, 184),
(49, 81, 155),
(179, 177, 69),
(93, 187, 158),
(13, 39, 73),
(12, 50, 60),
(16, 179, 33),
(112, 69, 165),
(15, 139, 63),
(33, 191, 159),
(182, 173, 32),
(34, 113, 133),
(90, 135, 34),
(53, 34, 86),
(141, 35, 190),
(6, 171, 8),
(118, 76, 112),
(89, 60, 55),
(15, 54, 88),
(112, 75, 181),
(42, 147, 38),
(138, 52, 63),
(128, 65, 149),
(106, 103, 24),
(168, 33, 45),
(28, 136, 135),
(86, 91, 108),
(52, 11, 76),
(142, 6, 189),
(57, 81, 168),
(55, 19, 148),
(182, 101, 89),
(44, 65, 179),
(1, 33, 26),
(122, 164, 26),
(70, 63, 134),
(137, 106, 82),
(120, 118, 52),
(129, 74, 42),
(182, 147, 112),
(22, 157, 50),
(56, 50, 20),
(2, 22, 177),
(156, 100, 106),
(21, 35, 42),
(13, 8, 121),
(142, 92, 28),
(45, 118, 33),
(105, 118, 30),
(7, 185, 124),
(46, 34, 146),
(105, 184, 169),
(22, 18, 5),
(147, 71, 73),
(181, 64, 91),
(31, 39, 184),
(164, 179, 33),
(96, 50, 18),
(95, 15, 106),
(113, 68, 54),
(136, 116, 112),
(119, 139, 130),
(31, 139, 34),
(66, 6, 127),
(62, 39, 2),
(49, 99, 180),
(49, 119, 155),
(153, 50, 183),
(125, 38, 3),
(129, 87, 143),
(49, 87, 40),
(128, 62, 120),
(73, 85, 148),
(28, 144, 118),
(29, 9, 24),
(175, 45, 108),
(81, 175, 64),
(178, 19, 157),
(74, 188, 190),
(18, 114, 2),
(62, 128, 96),
(21, 3, 150),
(0, 6, 95),
(2, 20, 184),
(122, 37, 185),
]
def bbox_to_rect(bbox, color):
return plt.Rectangle(
xy=(bbox[0],bbox[1]), width=bbox[2]-bbox[0],height=bbox[3]-bbox[1],
fill=False, edgecolor=color, linewidth=2
)
def visualization(set, sample):
image, annots = sample['img'], sample['annot']
fig = plt.imshow(image)
for i in range(len(annots)):
annot = [int(x) for x in annots[i]]
label = annot[4]
name = set.label_to_name(label)
color = [c/255.0 for c in colors[label]]
rect = bbox_to_rect(annot, color)
fig.axes.add_patch(rect)
fig.axes.text(rect.xy[0]+24, rect.xy[1]+10,
name, va='center', ha='center', fontsize=6, color='blue',
bbox=dict(facecolor='m'))
plt.show()
def easy_visualization(sample):
image, annots = sample['img'], sample['annot']
fig = plt.imshow(image)
for i in range(len(annots)):
annot = [int(x) for x in annots[i]]
label = annot[4]
color = [c/255.0 for c in colors[label]]
rect = bbox_to_rect(annot, color)
fig.axes.add_patch(rect)
plt.show()
def rotate_visualzation(sample):
image, annots = sample['img'], sample['annot']
image = Image.fromarray(np.int8(image * 255))
draw = ImageDraw.Draw(image)
for annot in annots:
xmin, ymin, xmax, ymax = annot[0], annot[1], annot[2], annot[3]
draw.line([(xmin, ymin), (xmax, ymax)])
"""
需要四个点,然后依次给五个点,形成一个闭合矩形
"""
image.show()
class SplitKittiDataset():
def __init__(self,
root_dir,
ratio=0.5):
self.ratio = ratio
self.root_dir = root_dir
self.ids = list()
self.find_file_list()
self.split()
def find_file_list(self):
file_path = os.path.join(self.root_dir, 'image_2')
for _, _, files in os.walk(file_path):
for file in files:
self.ids.append(file[:-4])
def __len__(self):
return len(self.ids)
def split(self):
dataset_size = self.__len__()
indices = list(range(dataset_size))
split = int(np.floor(self.ratio * dataset_size))
np.random.seed(42)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
train_file = self.root_dir + '/train.txt'
val_file = self.root_dir + '/val.txt'
self.write_file(train_file, [self.ids[ind] for ind in train_indices])
self.write_file(val_file, [self.ids[ind] for ind in val_indices])
def write_file(self, file_name, write_data):
f = open(file_name, "w")
for data in write_data:
if data != 'Thumb':
f.write(data + '\n')
if __name__ == '__main__':
root_path = 'D:/KITTI/training'
spkitti = SplitKittiDataset(root_path)