Skip to content

Includes: Learning data augmentation strategies for object detection | GridMask data augmentation | Augmentation for small object detection in Numpy. Use RetinaNet with ResNet-18 to test these methods on VOC and KITTI.

Notifications You must be signed in to change notification settings

cenchaojun/Data_Augmentation_Zoo_for_Object_Detection

 
 

Repository files navigation

Data_Augmentation_Zoo_for_Object_Detection

Background

This project is built for testing multiple data augmentations for object detection:

  1. Zoph B, Cubuk E D, Ghiasi G, et al. Learning data augmentation strategies for object detection[J]. arXiv preprint arXiv:1906.11172, 2019. pdf | github

  2. Chen P. GridMask data augmentation[J]. arXiv preprint arXiv:2001.04086, 2020. pdf | github

  3. Kisantal M, Wojna Z, Murawski J, et al. Augmentation for small object detection[J]. arXiv preprint arXiv:1902.07296, 2019. pdf

Augmentation zoo for object Detection

Learning data augmentation strategies for object detection

Color Distortion

  • AutoContrast
  • Equalize: Equalize the image histogram
  • Posterize
  • Solarize: Invert all pixels above a threshold value of magniude
  • SolarizeAdd: For each pixel in the image that is less than 128, add an additional amount to it decided by the magnitude.
  • Color: Adjust the color balance of the image.
  • Contrast: Control the contrast of the image.
  • Brightness: Adjust the brightness of the image.
  • Sharpness: Adjust the sharpness of the image
  • Solarize_Only_BBoxes
  • Equalize_Only_Bboxes

ColourDistortion

Spatial Transformation

  • Cutout
  • BBox_Cutout
  • Flip
  • Rotate_BBox
  • TranslateX_BBox
  • TranslateY_BBox
  • ShearX_BBox
  • ShearY_BBox
  • TranslateX_Only_BBoxes
  • TranslateY_Only_BBoxes
  • Rotate_Only_BBoxes
  • ShearX_Only_BBoxes
  • ShearY_Only_BBoxes
  • Flip_Only_BBoxes
  • Cutout_Only_Bboxes

SpatialTransformation

Learned augmentation policy

  • Policy v0, v1, and custom were used in AutoAugment Detection Paper
  • Policy v2, v3 are additional policies that perform well on object detection
  • Policy v4 is the policy which mentioned in this paper, "the best"

How to use

Make sure the file "/augmentation_zoo/Myautoaugment_utils.py" is in project folder.

from Myautoaugment_utils import AutoAugmenter
# if you want to use the learned augmentation policy custom or v0-v4(v4 was recommended):
autoaugmenter = AutoAugmenter('v4')
# or if you want to use some spatial transformation or color distortion data augmentation,
# add the data augmentation method that you want to use to the policy_test in Myautoaugment_utils.py 
# and set the prob and magnitude. For excample:
# def policy_vtest():
#    policy = [
#        [('Color', 0.0, 6), ('Cutout', 0.6, 8)],
#    ]
#    return policy
autoaugmenter = AutoAugmenter('test')
# Input: 
#   Sample = {'img': img, 'annot': annots}
#   img = [H, W, C], RGB, value between [0,1]
#   annot = [xmin, ymin, xmax, ymax, label]
# Return:
#   Sample = {'img': img, 'annot': annots}
Sample = autoaugmenter(Sample)
# Use in Pytorch
dataset = Dataset(root, transform=transforms.Compose([autoaugmenter]))

GridMask

GridMask

Make sure the file "/augmentation_zoo/MyGridMask.py" is in project folder. And the input and output requirements are same as above

from MyGridMask import GridMask
GRID = False
GRID_ROTATE = 1
GRID_OFFSET = 0
GRID_RATIO = 0.5
GRID_MODE = 1
GRID_PROB = 0.5
Gridmask = GridMask(True, True, GRID_ROTATE,GRID_OFFSET,GRID_RATIO,GRID_MODE,GRID_PROB)
Sample = Gridmask(Sample)

Augmentation for small object detection

SmallobjectAugmentation

This method includes 3 Copy-Pasting Strategies:

  1. Pick one small object in an image and copy-paste it 1 time in random locations.
  2. Choose numerous small objects and copy-paste each of these 3 times in an arbitrary position.
  3. Copy-paste all small objects in each image 1 times in random places.

I code it in this way:

Algorithm: Augmentation for small object detection
Input: Sample x, Policy v, Threshold thresh, Prob prob
function SmallObjectAugmentation(x, v, thresh, prob)
	Perform the function with the probability of prob
	img, annots = x[‘img’], x[‘annot’]
	for annot in annots do
		if issmallobject(annot, thresh) do
			small_object_list.append(annot)
		end if
	end for
	copy_times and copy_object_num were decided by v
	shuffle the small_object_list
	for idx in range(copy_object_num) do
		to_be_copied_annot = small_object_list[idx]
		for _ in range(copy_times) do
			new_annot = create_copy_annot(to_be_copied_annot, annots)
			if new_annot is not None do
				img = add_patch_in_img(new_annot, to_be_copied_annot, img)
				annots.append(new_annot)
			end if
		end for
	end for
	return {‘img’: img, ‘annot’:annots}
End function 

To use this method, make sure the file "/augmentation_zoo/SmallObjectAugmentation.py" is in project folder. And the input and output requirements are same as above

"""   SMALL OBJECT AUGMENTATION   """
# Defaultly perform Policy 2, if you want to use   
# Policy 1, make SOA_ONE_OBJECT = Ture, or if you 
# want to use Policy 3, make SOA_ALL_OBJECTS = True
SOA_THRESH = 64*64
SOA_PROB = 1
SOA_COPY_TIMES = 3
SOA_EPOCHS = 30
SOA_ONE_OBJECT = False
SOA_ALL_OBJECTS = False
augmenter = SmallObjectAugmentation(SOA_THRESH, SOA_PROB, SOA_COPY_TIMES, SOA_EPOCHS, SOA_ALL_OBJECTS, SOA_ONE_OBJECT)
Sample = augmenter(Sample)

Experiment

I use the RetinaNet with ResNet-18, testing in VOC and KITTI. VOC_BATCH_SIZE = 8, KITTI_BATCH_SIZE = 24

DataSets No Augmentation Random Flip Autoaugmenter('v1') Autoaugmenter('v4') GridMask Small Object Augmentation
VOC 0.61492 0.63738 0.63651 0.62267 0.65605 0.63870
KITTI 0.60375 0.63077 0.58631 0.64347 0.71868 0.62622
KITTI Car van truck pedestrian Person_sitting cyclist Tram Misc mAP
No Augmenation 0.80197 0.64498 0.84922 0.52134 0.27078 0.50485 0.79602 0.47798 0.60375
Random Flip 0.82147 0.66679 0.85982 0.54333 0.35177 0.53576 0.80296 0.46428 0.63077
AutoAugmenter(‘v1’) 0.82838 0.55684 0.74368 0.55461 0.38256 0.48259 0.74964 0.39217 0.58631
AutoAugmenter(‘v4’) 0.82566 0.64851 0.87592 0.54426 0.40881 0.56872 0.80106 0.47480 0.64347
GridMask 0.85529 0.75980 0.91472 0.59351 0.51708 0.62842 0.86256 0.61804 0.71867
Small Object Augmentation 0.83064 0.60390 0.85146 0.55325 0.42748 0.50965 0.76821 0.46511 0.62621

My Contributions

  1. Realized the data preprocessing of VOC and KITTI in VocDataset/KittiDataset, prepare_data.py, which could be used by modifying the file path in config.py
  2. Realized Augmentation for small object Detection
  3. Modified the code of other papers and adjusted it to Numpy format
  4. Tested these methods on data sets VOC and KITTI

About

Includes: Learning data augmentation strategies for object detection | GridMask data augmentation | Augmentation for small object detection in Numpy. Use RetinaNet with ResNet-18 to test these methods on VOC and KITTI.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%