An implementation of the "Sampling Distribution of the Mean"-based probability (SDMP). It enables the comparison of MC rendering algorithms (using Mitsuba) as outlined in the corresponding paper.
Python 3:
- numpy
- scipy
- matplotlib
- scikit-image
- scikit-learn
- mitsuba
-
Setup your Python installation. (for Anaconda users see .conda.yml)
-
Copy or install the this module.
- Setup a Mistuba XML file as the reference, e.g. "./data/veach-ajar/scene-ref.xml".
- Setup Mistuba XML files for the test / comparison, e.g. "./data/veach-ajar/scene-control.xml" and "./data/veach-ajar/scene-biased.xml"
- Make sure sampler parameters match for all of the used scenes.
- Choose SPP (>32 recommneded) and iteration count (e.g. 1024 for the reference and 32 for the test runs) and execute:
python -m sdmp 32 1024 ./data/veach-ajar/scene-ref.xml 256 ./data/veach-ajar/scene-control.xml ./data/veach-ajar/scene-biased.xml
For detailed command line parameters see help:
python -m sdmp -h
Alternatively, one can also run visualize.py
to see the renderings and statistics updated during computation.
Christian Freude, freude (at) cg.tuwien.ac.at
- 0.9.0
- Initial Release
This project is licensed under the GNU GPL LICENSE - see the LICENSE.md file for details
Funded by Austrian Science Fund (FWF): ORD 61