Skip to content

chencha3/MLIR-DLModels

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLIR-DLModels

This is a repository of deep neural network models that are compiled with MLIR using dialects in different abstraction levels. Currently, the original models are from IREE end-to-end test cases.

Commit ID

The model MLIRs are lowered and verified using tools in MLIR, MHLO, and IREE projects. Here are the commit IDs of the project repos.

  • IREE: 794bbf4c23e790d9f897d7b6eebd0522e7c4af47
  • LLVM: 0fbe3f3f486e01448121f7931a4ca29fac1504ab
  • MHLO: e4d50a80ec92031c21a216e2855803cad1b7269a

File Descriptions

Directories

  • original-iree-model: the same models in IREE's end to end tests. Verified using command:
iree-run-mlir --iree-input-type=mhlo --iree-hal-target-backends=dylib-llvm-aot
  • mhlo-dialect-only: replace IREE specific operations (Util) with arith dialect.
  • lowered-linalg-dialect: the Linalg dialect verision that is lowered from MHLO. Command:
mlir-hlo-opt -mhlo-test-unfuse-batch-norm -cse -hlo-legalize-to-linalg
  • trueth-llvm-dialect: the LLVM dialect verision that is lowered from Linalg.

Lowering command:

mlir-opt -convert-tensor-to-linalg -linalg-bufferize -arith-bufferize  -tensor-bufferize -func-bufferize -buffer-deallocation -convert-linalg-to-loops -convert-scf-to-cf  -convert-linalg-to-llvm -lower-affine -convert-scf-to-cf --convert-memref-to-llvm -convert-func-to-llvm -reconcile-unrealized-casts --arith-expand --convert-arith-to-llvm --convert-math-to-llvm -finalizing-bufferize

Verify command:

mlir-cpu-runner -e main -entry-point-result=void    -shared-libs=/path/to/libmlir_c_runner_utils.so,/path/to/libmlir_runner_utils.so

Files

  • IREE-swap.py: swaps IREE util.global, util.address, and util.load operations to arith constant operation.

  • makefile: records the commands and flags to reproduce the lowering and verification processes.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MLIR 99.6%
  • Other 0.4%