-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
198 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import tensorflow as tf | ||
|
||
slim = tf.contrib.slim | ||
|
||
|
||
class NASBaseCell(object): | ||
"""NASNet Cell class that is used as a 'layer' in image architectures. | ||
Args: | ||
num_conv_filters: The number of filters for each convolution operation. | ||
operations: List of operations that are performed in the NASNet Cell in | ||
order. | ||
used_hiddenstates: Binary array that signals if the hiddenstate was used | ||
within the cell. This is used to determine what outputs of the cell | ||
should be concatenated together. | ||
hiddenstate_indices: Determines what hiddenstates should be combined | ||
together with the specified operations to create the NASNet cell. | ||
""" | ||
|
||
def __init__(self, num_conv_filters, operations, used_hiddenstates, | ||
hiddenstate_indices, drop_path_keep_prob, total_num_cells, | ||
total_training_steps): | ||
assert len(hiddenstate_indices) == len(operations) | ||
assert len(operations) % 2 == 0 | ||
self._num_conv_filters = num_conv_filters | ||
self._operations = operations | ||
self._used_hiddenstates = used_hiddenstates | ||
self._hiddenstate_indices = hiddenstate_indices | ||
self._drop_path_keep_prob = drop_path_keep_prob | ||
self._total_num_cells = total_num_cells | ||
self._total_training_steps = total_training_steps | ||
|
||
def __call__(self, net, scope, filter_scaling, stride, prev_layer, cell_num): | ||
self._cell_num = cell_num | ||
self._filter_scaling = filter_scaling | ||
self._filter_size = int(self._num_conv_filters * filter_scaling) | ||
|
||
with tf.variable_scope(scope): | ||
net = self._cell_base(net, prev_layer) | ||
for i in range(int(len(self._operations) / 2)): | ||
with tf.variable_scope('comb_iter_{}'.format(i)): | ||
h1 = net[self._hiddenstate_indices[i * 2]] | ||
h2 = net[self._hiddenstate_indices[i * 2 + 1]] | ||
with tf.variable_scope('left'): | ||
h1 = self._apply_operation(h1, self._operations[i * 2], stride, | ||
self._hiddenstate_indices[i * 2] < 2) | ||
with tf.variable_scope('right'): | ||
h2 = self._apply_operation(h2, self._operations[i * 2 + 1], stride, | ||
self._hiddenstate_indices[i * 2 + 1] < 2) | ||
with tf.variable_scope('combine'): | ||
h = h1 + h2 | ||
net.append(h) | ||
|
||
with tf.variable_scope('cell_output'): | ||
net = self._combine_unused_states(net) | ||
|
||
return net | ||
|
||
def _cell_base(self, net, prev_layer): | ||
filter_size = self._filter_size | ||
|
||
if prev_layer is None: | ||
prev_layer = net | ||
elif net.shape[2] != prev_layer.shape[2]: | ||
prev_layer = tf.nn.relu(prev_layer) | ||
prev_layer = self._factorized_reduction(prev_layer, filter_size, stride=2) | ||
elif filter_size != prev_layer.shape[3]: | ||
prev_layer = tf.nn.relu(prev_layer) | ||
prev_layer = slim.conv2d(prev_layer, filter_size, 1, scope='prev_1x1') | ||
prev_layer = slim.batch_norm(prev_layer, scope='prev_bn') | ||
|
||
net = tf.nn.relu(net) | ||
net = slim.conv2d(net, filter_size, 1, scope='1x1') | ||
net = slim.batch_norm(net, scope='beginning_bn') | ||
net = tf.split(axis=3, num_or_size_splits=1, value=net) | ||
for split in net: | ||
assert split.shape[3] == filter_size | ||
net.append(prev_layer) | ||
return net | ||
|
||
def _apply_operation(self, net, operation, stride, is_from_original_input): | ||
if stride > 1 and not is_from_original_input: | ||
stride = 1 | ||
input_filters = net.shape[3] | ||
filter_size = self._filter_size | ||
if 'separable' in operation: | ||
num_layers = int(operation.split('_')[-1]) | ||
kernel_size = int(operation.split('x')[0][-1]) | ||
for layer_num in range(num_layers): | ||
net = tf.nn.relu(net) | ||
net = slim.separable_conv2d( | ||
net, | ||
filter_size, | ||
kernel_size, | ||
depth_multiplier=1, | ||
scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1), | ||
stride=stride) | ||
net = slim.batch_norm( | ||
net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1)) | ||
stride = 1 | ||
elif operation in ['none']: | ||
if stride > 1 or (input_filters != filter_size): | ||
net = tf.nn.relu(net) | ||
net = slim.conv2d(net, filter_size, 1, stride=stride, scope='1x1') | ||
net = slim.batch_norm(net, scope='bn_1') | ||
elif 'pool' in operation: | ||
pooling_type = operation.split('_')[0] | ||
pooling_shape = int(operation.split('_')[-1].split('x')[0]) | ||
if pooling_type == 'avg': | ||
net = slim.avg_pool2d(net, pooling_shape, stride=stride, padding='SAME') | ||
elif pooling_type == 'max': | ||
net = slim.max_pool2d(net, pooling_shape, stride=stride, padding='SAME') | ||
else: | ||
raise ValueError('Unimplemented pooling type: ', pooling_type) | ||
if input_filters != filter_size: | ||
net = slim.conv2d(net, filter_size, 1, stride=1, scope='1x1') | ||
net = slim.batch_norm(net, scope='bn_1') | ||
else: | ||
raise ValueError('Unimplemented operation: ', operation) | ||
|
||
if operation != 'none': | ||
net = self._apply_drop_path(net) | ||
return net | ||
|
||
def _combine_unused_states(self, net): | ||
used_hiddenstates = self._used_hiddenstates | ||
states_to_combine = ( | ||
[h for h, is_used in zip(net, used_hiddenstates) if not is_used]) | ||
net = tf.concat(values=states_to_combine, axis=3) | ||
return net | ||
|
||
def _apply_drop_path(self, net): | ||
drop_path_keep_prob = self._drop_path_keep_prob | ||
if drop_path_keep_prob < 1.0: | ||
# Scale keep prob by layer number | ||
assert self._cell_num != -1 | ||
layer_ratio = (self._cell_num + 1) / float(self._total_num_cells) | ||
drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob) | ||
# Decrease keep prob over time | ||
current_step = tf.cast(tf.train.get_or_create_global_step(), tf.float32) | ||
current_ratio = tf.minimum(1.0, current_step / self._total_training_steps) | ||
drop_path_keep_prob = 1 - current_ratio * (1 - drop_path_keep_prob) | ||
# Drop path | ||
noise_shape = [net.shape[0], 1, 1, 1] | ||
random_tensor = drop_path_keep_prob | ||
random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32) | ||
binary_tensor = tf.cast(tf.floor(random_tensor), net.dtype) | ||
keep_prob_inv = tf.cast(1.0 / drop_path_keep_prob, net.dtype) | ||
net = net * keep_prob_inv * binary_tensor | ||
return net | ||
|
||
def _factorized_reduction(self, net, output_filters, stride): | ||
assert output_filters % 2 == 0 | ||
if stride == 1: | ||
net = slim.conv2d(net, output_filters, 1, scope='path_conv') | ||
net = slim.batch_norm(net, scope='path_bn') | ||
return net | ||
stride_spec = [1, stride, stride, 1] | ||
|
||
# Skip path 1 | ||
path1 = tf.nn.avg_pool(net, [1, 1, 1, 1], stride_spec, 'VALID') | ||
path1 = slim.conv2d(path1, int(output_filters / 2), 1, scope='path1_conv') | ||
|
||
# Skip path 2 | ||
pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] | ||
path2 = tf.pad(net, pad_arr)[:, 1:, 1:, :] | ||
path2 = tf.nn.avg_pool(path2, [1, 1, 1, 1], stride_spec, 'VALID') | ||
path2 = slim.conv2d(path2, int(output_filters / 2), 1, scope='path2_conv') | ||
|
||
# Concat and apply BN | ||
final_path = tf.concat(values=[path1, path2], axis=3) | ||
final_path = slim.batch_norm(final_path, scope='final_path_bn') | ||
return final_path | ||
|
||
|
||
class PNASCell(NASBaseCell): | ||
"""PNASNet Cell.""" | ||
|
||
def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, | ||
total_training_steps): | ||
# Configuration for the PNASNet-5 model. | ||
operations = [ | ||
'separable_5x5_2', 'max_pool_3x3', 'separable_7x7_2', 'max_pool_3x3', | ||
'separable_5x5_2', 'separable_3x3_2', 'separable_3x3_2', 'max_pool_3x3', | ||
'separable_3x3_2', 'none' | ||
] | ||
used_hiddenstates = [1, 1, 0, 0, 0, 0, 0] | ||
hiddenstate_indices = [1, 1, 0, 0, 0, 0, 4, 0, 1, 0] | ||
|
||
super(PNASCell, self).__init__( | ||
num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, | ||
drop_path_keep_prob, total_num_cells, total_training_steps) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters