Skip to content
/ cmcl Public

This code is for the paper "Confident Multiple Choice Learning".

License

Notifications You must be signed in to change notification settings

chhwang/cmcl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Confident Multiple Choice Learning

This code is for the paper "Confident Multiple Choice Learning".

Preliminaries

It is tested under Ubuntu Linux 16.04.1 and Python 2.7 environment, and requries following Python packages to be installed:

  • TensorFlow: version 1.0.0 or above. Only GPU version is available.
  • Torchfile: version 0.0.2 or above.

Simple torchfile installation:

pip install torchfile

Dataset

We provide the following datasets in torch format:

Example scripts

  • run_CMCL.sh: train the models using "Confident multiple choice learning".
  • run_MCL.sh: train the models using "Multiple choice learning".
  • run_IE.sh: train the models using "Independent ensemble".

All training options:

python src/ensemble.py \
--dataset=cifar \
--model_type=resnet \
--batch_size=128 \
--num_model=5 \
--loss_type=cmcl_v0 \
--k=4 \
--beta=0.75 \
--feature_sharing=True \
--test=False
  • dataset : supports cifar and svhn.
  • model_type : supports vggnet, googlenet, and resnet.
  • batch_size : we use batch size 128.
  • num_model : number of models to ensemble.
  • loss_type : supports independent, mcl, cmcl_v0, and cmcl_v1.
  • k : overlap parameter.
  • beta : penalty parameter.
  • feature_sharing : use feature sharing if True.
  • test : if True, test the result of previous training, otherwise run a new training.

About

This code is for the paper "Confident Multiple Choice Learning".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •