forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "Changes to mxnet.metric (apache#18083)"
This reverts commit effbb8b.
- Loading branch information
Showing
95 changed files
with
14,658 additions
and
798 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import time | ||
import argparse | ||
import os | ||
import multiprocessing | ||
from mxnet.test_utils import * | ||
|
||
MAX_NUM_BATCH = 99999999 | ||
COMP = "compute" | ||
COMM = "communication" | ||
IO = "io" | ||
|
||
parser = argparse.ArgumentParser(description="Run sparse linear regression " \ | ||
"with distributed kvstore", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument('--profiler', type=int, default=0, | ||
help='whether to use profiler') | ||
parser.add_argument('--num-epoch', type=int, default=1, | ||
help='number of epochs to train') | ||
parser.add_argument('--batch-size', type=int, default=512, | ||
help='number of examples per batch') | ||
parser.add_argument('--num-batch', type=int, default=MAX_NUM_BATCH, | ||
help='number of batches per epoch') | ||
parser.add_argument('--dummy-iter', type=int, default=0, | ||
help='whether to use dummy iterator to exclude io cost') | ||
parser.add_argument('--kvstore', type=str, default=None, | ||
help='what kvstore to use [local, dist_sync, etc]') | ||
parser.add_argument('--sparse-log-level', type=str, default='DEBUG', | ||
help='logging level [DEBUG, INFO, ERROR]') | ||
parser.add_argument('--dataset', type=str, default='avazu', | ||
help='what test dataset to use') | ||
parser.add_argument('--num-gpu', type=int, default=0, | ||
help='number of gpus to use. 0 means using cpu(0);' | ||
'otherwise, use gpu(0),...,gpu(num_gpu-1)') | ||
parser.add_argument('--output-dim', type=int, default=4, | ||
help='number of columns of the forward output') | ||
parser.add_argument('--dummy-metric', type=int, default=0, | ||
help='whether to call update_metric') | ||
parser.add_argument('--enable-logging-for', default="0", | ||
help="Enable logging for the specified list of workers") | ||
parser.add_argument('--measure-only', default=None, | ||
help="Measure only", | ||
choices=[IO, COMP, COMM]) | ||
parser.add_argument('--omit-row-sparse-push', action='store_true', | ||
help="omit row_sparse_push") | ||
|
||
class DummyIter(mx.io.DataIter): | ||
"A dummy iterator that always return the same batch, used for speed testing" | ||
def __init__(self, real_iter): | ||
super(DummyIter, self).__init__() | ||
self.real_iter = real_iter | ||
self.provide_data = real_iter.provide_data | ||
self.provide_label = real_iter.provide_label | ||
self.batch_size = real_iter.batch_size | ||
|
||
for batch in real_iter: | ||
self.the_batch = batch | ||
break | ||
|
||
def __iter__(self): | ||
return self | ||
|
||
def next(self): | ||
return self.the_batch | ||
|
||
# testing dataset sources | ||
avazu = { | ||
'data_name': 'avazu-app.t', | ||
'data_origin_name': 'avazu-app.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", | ||
'feature_dim': 1000001, | ||
'lc': 1719304, | ||
} | ||
|
||
kdda = { | ||
'data_name': 'kdda.t', | ||
'data_origin_name': 'kdda.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", | ||
'feature_dim': 20216831, | ||
'lc': 510302, | ||
} | ||
|
||
criteo = { | ||
'data_name': 'criteo.t', | ||
'data_origin_name': 'criteo.t.bz2', | ||
'url': "https://s3-us-west-2.amazonaws.com/sparse-dataset/criteo.t.bz2", | ||
'feature_dim': 8388621, | ||
'lc': 548787, | ||
} | ||
|
||
datasets = { 'kdda' : kdda, 'avazu' : avazu , 'criteo': criteo } | ||
|
||
|
||
def get_sym(feature_dim): | ||
inputs = mx.symbol.Variable("data", stype='csr') | ||
norm_init = mx.initializer.Normal(sigma=0.01) | ||
weights = mx.symbol.Variable("w", shape=(feature_dim, args.output_dim), | ||
init=norm_init, stype='row_sparse') | ||
embed = mx.symbol.sparse.dot(inputs, weights) | ||
softmax_output = mx.symbol.Variable("softmax_label") | ||
model = mx.symbol.SoftmaxOutput(data=embed, label=softmax_output, name="out") | ||
return model | ||
|
||
|
||
def row_sparse_push(kv, param_arrays, grad_arrays, param_names): | ||
for index, pair in enumerate(zip(param_arrays, grad_arrays)): | ||
arg_list, grad_list = pair | ||
if grad_list[0] is None: | ||
continue | ||
name = param_names[index] | ||
kv.push(name, grad_list, priority=-index) | ||
|
||
|
||
def row_sparse_pull(kv, key, data, slices, weight_array, priority): | ||
# if have kvstore, need to pull corresponding rows of | ||
# the weights to each context | ||
# column indices (NDArray type) of the csr data | ||
# used as the row_idx of the weight row-sparse matrix | ||
row_indices = data.indices | ||
if len(slices) == 1: | ||
kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_indices) | ||
else: # more than one slices, multi-GPU training. Need to retain weight rows according to data slices | ||
# TODO(junwu): | ||
# the following line blocks, may need to pre-compute | ||
# and cache it outside the for loop | ||
indptr = data.indptr.asnumpy() | ||
row_idx_array = [] | ||
for s in slices: | ||
row_idx_array.append(row_indices[indptr[s.start]:indptr[s.stop]]) | ||
kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_idx_array) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
# arg parser | ||
args = parser.parse_args() | ||
num_epoch = args.num_epoch | ||
num_batch = args.num_batch | ||
kvstore = args.kvstore | ||
profiler = args.profiler > 0 | ||
batch_size = args.batch_size if args.num_gpu == 0 else args.num_gpu * args.batch_size | ||
dummy_iter = args.dummy_iter | ||
dataset = args.dataset | ||
log_level = args.sparse_log_level | ||
measure_only = args.measure_only | ||
num_cores = multiprocessing.cpu_count() | ||
omit_row_sparse_push = args.omit_row_sparse_push | ||
if measure_only == COMP or measure_only == IO: | ||
assert not kvstore, "when compute_only or io_only is set, kvstore should be None" | ||
num_batch = datasets[dataset]['lc'] / batch_size if num_batch == MAX_NUM_BATCH else num_batch | ||
if measure_only == COMM: | ||
assert (kvstore == "dist_async"), "when communication_only is set kvstore should be dist_async" | ||
num_batch = datasets[dataset]['lc'] / batch_size if num_batch == MAX_NUM_BATCH else num_batch | ||
|
||
|
||
contexts = mx.context.cpu(0) if args.num_gpu < 1\ | ||
else [mx.context.gpu(i) for i in range(args.num_gpu)] | ||
|
||
# create kvstore when there are gpus | ||
kv = mx.kvstore.create(kvstore) if kvstore else None | ||
rank = kv.rank if kv is not None else 0 | ||
num_worker = kv.num_workers if kv is not None else 1 | ||
|
||
# only print log for rank 0 worker | ||
import logging | ||
if log_level == 'ERROR': | ||
log_level = logging.ERROR | ||
elif log_level == 'DEBUG': | ||
log_level = logging.DEBUG | ||
else: | ||
log_level = logging.INFO | ||
|
||
# Only log if it is in the list of workers to be logged | ||
logging_workers_list = [int(i) for i in args.enable_logging_for.split(",")] | ||
log_level = log_level if rank in logging_workers_list else logging.CRITICAL | ||
|
||
head = '%(asctime)-15s %(message)s' | ||
logging.basicConfig(level=log_level, format=head) | ||
|
||
# dataset | ||
assert(dataset in datasets), "unknown dataset " + dataset | ||
metadata = datasets[dataset] | ||
feature_dim = metadata['feature_dim'] | ||
if logging: | ||
logging.debug('preparing data ... ') | ||
data_dir = os.path.join(os.getcwd(), 'data') | ||
path = os.path.join(data_dir, metadata['data_name']) | ||
if not os.path.exists(path): | ||
get_bz2_data(data_dir, metadata['data_name'], metadata['url'], | ||
metadata['data_origin_name']) | ||
assert os.path.exists(path) | ||
|
||
# data iterator | ||
train_data = mx.io.LibSVMIter(data_libsvm=path, data_shape=(feature_dim,), | ||
batch_size=batch_size, num_parts=num_worker, | ||
part_index=rank) | ||
if dummy_iter or measure_only == COMP or measure_only == COMM: | ||
train_data = DummyIter(train_data) | ||
|
||
# model | ||
model = get_sym(feature_dim) | ||
|
||
# module | ||
mod = mx.mod.Module(symbol=model, data_names=['data'], | ||
label_names=['softmax_label'], context=contexts) | ||
mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label) | ||
mod.init_params(initializer=mx.init.Uniform(scale=.1)) | ||
sgd = mx.optimizer.SGD(momentum=0.0, clip_gradient=5.0, | ||
learning_rate=0.1, rescale_grad=1.0/batch_size/num_worker) | ||
mod.init_optimizer(optimizer=sgd, kvstore=kv) | ||
# use accuracy as the metric | ||
metric = mx.metric.create('acc') | ||
|
||
index = mod._exec_group.param_names.index('w') | ||
# weight_array bound to executors of the contexts | ||
weight_array = mod._exec_group.param_arrays[index] | ||
|
||
mx.nd.waitall() # sync point for initialization | ||
# start profiler | ||
if profiler: | ||
device = 'cpu' | ||
if args.num_gpu > 0: | ||
device = 'gpu' + str(args.num_gpu) | ||
name = 'profile_' + args.dataset + '_' + device + '_nworker' + str(num_worker)\ | ||
+ '_batchsize' + str(args.batch_size) + '_outdim' + str(args.output_dim) + '.json' | ||
mx.profiler.set_config(profile_all=True, filename=name) | ||
mx.profiler.set_state('run') | ||
|
||
logging.debug('start training ...') | ||
start = time.time() | ||
data_iter = iter(train_data) | ||
time_cost_epoch = 0. | ||
sum_cost_epoch = 0. | ||
average_cost_epoch = 0. | ||
|
||
for epoch in range(num_epoch): | ||
start_time_epoch = time.time() | ||
nbatch = 0 | ||
end_of_batch = False | ||
metric.reset() | ||
next_batch = next(data_iter) | ||
if kv is not None: | ||
row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) | ||
while not end_of_batch: | ||
nbatch += 1 | ||
batch = next_batch | ||
|
||
if measure_only != IO and measure_only != COMM: | ||
mod.forward_backward(batch) | ||
# update parameters | ||
mod.update() | ||
if measure_only == COMM: | ||
if nbatch == 1: | ||
mod.forward_backward(batch) | ||
mod.update() | ||
elif not omit_row_sparse_push: | ||
row_sparse_push(kv, mod._exec_group.param_arrays, mod._exec_group.grad_arrays, mod._exec_group.param_names) | ||
|
||
|
||
try: | ||
# pre fetch next batch | ||
next_batch = next(data_iter) | ||
if nbatch == num_batch: | ||
raise StopIteration | ||
if kv is not None: | ||
row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) | ||
except StopIteration: | ||
end_of_batch = True | ||
# accumulate prediction accuracy | ||
if args.dummy_metric == 0: | ||
mod.update_metric(metric, batch.label) | ||
else: # call waitall to replace update_metric as sync point | ||
mx.nd.waitall() # sync point for the current minibatch | ||
logging.info('epoch {}, {}'.format(epoch, metric.get())) | ||
end_time_epoch = time.time() | ||
if epoch == 0: | ||
logging.debug("num_batches = {}".format(nbatch)) | ||
logging.info('|device|num_worker|average_cost_epoch|rank|') | ||
time_cost_epoch = end_time_epoch - start_time_epoch | ||
if epoch > 0: | ||
sum_cost_epoch = sum_cost_epoch + time_cost_epoch | ||
average_cost_epoch = float(sum_cost_epoch) / epoch | ||
logging.info('num_worker = {}, time cost per epoch = {}'.format(str(num_worker), str(time_cost_epoch))) | ||
if args.num_gpu < 1: | ||
logging.info('|cpu/{} cores| {} | {} | {} |'.format(str(num_cores), str(num_worker), str(average_cost_epoch), rank)) | ||
data_iter.reset() | ||
if profiler: | ||
mx.profiler.set_state('stop') | ||
end = time.time() | ||
time_cost = end - start | ||
logging.info('num_worker = {}, rank = {}, time cost = {}'.format(str(num_worker), str(rank), str(time_cost))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.