Skip to content

Commit

Permalink
Merge pull request espnet#4183 from AshibaWu/mediaspeech-asr
Browse files Browse the repository at this point in the history
Add MediaSpeech ASR recipe
  • Loading branch information
ftshijt authored Apr 27, 2022
2 parents 40202fc + bd85a97 commit 4a12ab3
Show file tree
Hide file tree
Showing 28 changed files with 709 additions and 1 deletion.
2 changes: 1 addition & 1 deletion egs/commonvoice/asr1/local/download_and_untar.sh
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ fi

if [ $# -ne 3 ]; then
echo "Usage: $0 [--remove-archive] <data-base> <url> <filename>"
echo "e.g.: $0 /export/data/ https://common-voice-data-download.s3.amazonaws.com/cv_corpus_v1.tar.gz cv_corpus_v1.tar.gz"
echo "e.g.: $0 /export/data/ https://us.openslr.org/resources/108/FR.tgz"
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
exit 0;
fi
Expand Down
1 change: 1 addition & 0 deletions egs2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ See: https://espnet.github.io/espnet/espnet2_tutorial.html#recipes-using-espnet2
| ljspeech | The LJ Speech Dataset | TTS | ENG | https://keithito.com/LJ-Speech-Dataset/ | |
| lrs3 | The Oxford-BBC Lip Reading Sentences 3 (LRS3) Dataset | ASR | ENG | https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html | |
| lrs2 | The Oxford-BBC Lip Reading Sentences 2 (LRS2) Dataset | Lipreading/ASR | ENG | https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html | |
| mediaspeech | MediaSpeech: Multilanguage ASR Benchmark and Dataset | ASR | FRA | https://www.openslr.org/108/ | |
| microsoft_speech | Microsoft Speech Corpus (Indian languages) | ASR | 3 languages | https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e | |
| mini_an4 | Mini version of CMU AN4 database for the integration test | ASR/TTS/SE | ENG | http://www.speech.cs.cmu.edu/databases/an4/ | |
| mini_librispeech | Mini version of Librispeech corpus | DIAR | ENG | https://openslr.org/31/ | |
Expand Down
2 changes: 2 additions & 0 deletions egs2/TEMPLATE/asr1/db.sh
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ LIBRILIGHT_LIMITED=
FSC=
SLURP=
VOXCELEB=
MEDIASPEECH=downloads
MINI_LIBRISPEECH=downloads
MISP2021=
LIBRIMIX=downloads
Expand Down Expand Up @@ -217,6 +218,7 @@ if [[ "$(hostname -d)" == clsp.jhu.edu ]]; then
FSC=
SNIPS= # smart-light-en-closed-field data path
SLURP=
MEDIASPEECH=downloads
MINI_LIBRISPEECH=downloads
LIBRITTS=
LJSPEECH=downloads
Expand Down
34 changes: 34 additions & 0 deletions egs2/mediaspeech/asr1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Hugging Face
Model is available in Hugging Face: https://huggingface.co/espnet/mediaspeech-fr-hubert

<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Tue Mar 22 13:50:31 UTC 2022`
- python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]`
- espnet version: `espnet 0.10.7a1`
- pytorch version: `pytorch 1.10.1`
- Git hash: `1991a25855821b8b61d775681aa0cdfd6161bbc8`
- Commit date: `Mon Mar 21 22:19:19 2022 +0800`

## asr_train_asr_hubert_raw_as_bpe150_sp
### WER

|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave/dev_as|249|10072|49.7|41.2|9.1|7.0|57.2|100.0|
|inference_asr_model_valid.acc.ave/test_as|249|9920|51.1|40.1|8.9|6.5|55.4|100.0|

### CER

|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave/dev_as|249|58679|80.9|8.0|11.1|7.2|26.3|100.0|
|inference_asr_model_valid.acc.ave/test_as|249|58694|82.1|7.2|10.8|7.1|25.0|100.0|

### TER

|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_asr_model_valid.acc.ave/dev_as|249|30837|69.5|19.0|11.5|6.3|36.8|100.0|
|inference_asr_model_valid.acc.ave/test_as|249|30942|70.7|17.9|11.4|6.0|35.3|100.0|
1 change: 1 addition & 0 deletions egs2/mediaspeech/asr1/asr.sh
110 changes: 110 additions & 0 deletions egs2/mediaspeech/asr1/cmd.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -–max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentation for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~


# Select the backend used by run.sh from "local", "stdout", "sge", "slurm", or "ssh"
cmd_backend='local'

# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then

# The other usage
export train_cmd="run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="run.pl"
# Used for "*_recog.py"
export decode_cmd="run.pl"

# Local machine logging to stdout and log file, without any Job scheduling system
elif [ "${cmd_backend}" = stdout ]; then

# The other usage
export train_cmd="stdout.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="stdout.pl"
# Used for "*_recog.py"
export decode_cmd="stdout.pl"


# "qsub" (Sun Grid Engine, or derivation of it)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.

export train_cmd="queue.pl"
export cuda_cmd="queue.pl"
export decode_cmd="queue.pl"


# "qsub" (Torque/PBS.)
elif [ "${cmd_backend}" = pbs ]; then
# The default setting is written in conf/pbs.conf.

export train_cmd="pbs.pl"
export cuda_cmd="pbs.pl"
export decode_cmd="pbs.pl"


# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partition" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by default for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".

export train_cmd="slurm.pl"
export cuda_cmd="slurm.pl"
export decode_cmd="slurm.pl"

elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.

export train_cmd="ssh.pl"
export cuda_cmd="ssh.pl"
export decode_cmd="ssh.pl"

# This is an example of specifying several unique options in the JHU CLSP cluster setup.
# Users can modify/add their own command options according to their cluster environments.
elif [ "${cmd_backend}" = jhu ]; then

export train_cmd="queue.pl --mem 2G"
export cuda_cmd="queue-freegpu.pl --mem 2G --gpu 1 --config conf/queue.conf"
export decode_cmd="queue.pl --mem 4G"

else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi
1 change: 1 addition & 0 deletions egs2/mediaspeech/asr1/conf/decode_asr.yaml
2 changes: 2 additions & 0 deletions egs2/mediaspeech/asr1/conf/fbank.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
--sample-frequency=16000
--num-mel-bins=80
11 changes: 11 additions & 0 deletions egs2/mediaspeech/asr1/conf/pbs.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Default configuration
command qsub -V -v PATH -S /bin/bash
option name=* -N $0
option mem=* -l mem=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l ncpus=$0
option num_threads=1 # Do not add anything to qsub_opts
option num_nodes=* -l nodes=$0:ppn=1
default gpu=0
option gpu=0
option gpu=* -l ngpus=$0
1 change: 1 addition & 0 deletions egs2/mediaspeech/asr1/conf/pitch.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
--sample-frequency=16000
12 changes: 12 additions & 0 deletions egs2/mediaspeech/asr1/conf/queue.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -l arch=*64*
option name=* -N $0
option mem=* -l mem_free=$0,ram_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -pe smp $0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
option num_nodes=* -pe mpi $0 # You must set this PE as allocation_rule=1
default gpu=0
option gpu=0
option gpu=* -l gpu=$0 -q g.q
14 changes: 14 additions & 0 deletions egs2/mediaspeech/asr1/conf/slurm.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# Default configuration
command sbatch --export=PATH
option name=* --job-name $0
option time=* --time $0
option mem=* --mem-per-cpu $0
option mem=0
option num_threads=* --cpus-per-task $0
option num_threads=1 --cpus-per-task 1
option num_nodes=* --nodes $0
default gpu=0
option gpu=0 -p cpu
option gpu=* -p gpu --gres=gpu:$0 -c $0 # Recommend allocating more CPU than, or equal to the number of GPU
# note: the --max-jobs-run option is supported as a special case
# by slurm.pl and you don't have to handle it in the config file.
1 change: 1 addition & 0 deletions egs2/mediaspeech/asr1/conf/train_asr.yaml
70 changes: 70 additions & 0 deletions egs2/mediaspeech/asr1/conf/tuning/train_asr_conformer.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
cudnn_benchmark: false
cudnn_deterministic: false
use_amp: true
encoder: conformer
encoder_conf:
output_size: 512
attention_heads: 8
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d
normalize_before: true
macaron_style: true
pos_enc_layer_type: "rel_pos"
selfattention_layer_type: "rel_selfattn"
activation_type: "swish"
use_cnn_module: true
cnn_module_kernel: 31

decoder: transformer
decoder_conf:
attention_heads: 8
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1

optim: adam
optim_conf:
lr: 0.0002
scheduler: warmuplr # pytorch v1.1.0+ required #Tune warmup steps
scheduler_conf:
warmup_steps: 25000
max_epoch: 50

frontend_conf:
n_fft: 512
hop_length: 256

model_conf:
ctc_weight: 0.3
lsm_weight: 0.1
length_normalized_loss: false
extract_feats_in_collect_stats: false # Note: "False" means during collect stats (stage 10), generating dummy stats files rather than extract_feats by forward frontend.

specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2

best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10
Loading

0 comments on commit 4a12ab3

Please sign in to comment.