Skip to content

Commit

Permalink
Merge pull request espnet#3900 from YushiUeda/librimix_diar
Browse files Browse the repository at this point in the history
Fix issues in EEND-EDA & add Librimix_diar recipe
  • Loading branch information
ftshijt authored Jan 5, 2022
2 parents cddeeef + 0b2a678 commit 4d6c76a
Show file tree
Hide file tree
Showing 32 changed files with 878 additions and 37 deletions.
1 change: 1 addition & 0 deletions egs2/TEMPLATE/asr1/db.sh
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ SLURP=
VOXCELEB=
MINI_LIBRISPEECH=downloads
MISP2021=
LIBRIMIX=downloads
LIBRITTS=
LJSPEECH=downloads
NSC=
Expand Down
31 changes: 13 additions & 18 deletions egs2/TEMPLATE/diar1/scripts/utils/show_diar_result.sh
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#!/usr/bin/env bash
mindepth=0
maxdepth=1
mindepth=1
maxdepth=5

. utils/parse_options.sh

Expand Down Expand Up @@ -44,26 +44,21 @@ cat << EOF
EOF

while IFS= read -r expdir; do
if ls "${expdir}"/*/*/*/scoring/result_* &> /dev/null; then
# if ls "${expdir}"/*/*/*/scoring/result_* &> /dev/null; then
if ls "${expdir}"/scoring/result_* &> /dev/null; then
diardir=${expdir#*/}
cat << EOF
## $(basename ${expdir})
## ${diardir%%/*}
### DER
EOF
while IFS= read -r datasetdir; do
if ls "${datasetdir}"/scoring/result_* &> /dev/null; then
cat << EOF
$(basename ${datasetdir})
${expdir##*/}
|threshold_median_collar|DER|
|---|---|
EOF
for file in "${datasetdir}"/scoring/result_*; do
grep OVER ${file} \
| grep -v nooverlap \
| sed "s/^.*[^0-9]\([0-9]\{1,3\}\.[0-9]\{2\}\).*$/\|$(basename ${file})\|\1\|/"
echo -n
done
fi
done < <(find ${expdir} -mindepth 1 -maxdepth 5 -type d)
for file in "${expdir}"/scoring/result_*; do
grep OVER ${file} \
| grep -v nooverlap \
| sed "s/^.*[^0-9]\([0-9]\{1,3\}\.[0-9]\{2\}\).*$/\|$(basename ${file})\|\1\|/"
echo -n
done
fi
done < <(find ${exp} -mindepth ${mindepth} -maxdepth ${maxdepth} -type d)
110 changes: 110 additions & 0 deletions egs2/librimix/diar1/cmd.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -–max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentation for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~


# Select the backend used by run.sh from "local", "stdout", "sge", "slurm", or "ssh"
cmd_backend='local'

# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then

# The other usage
export train_cmd="run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="run.pl"
# Used for "*_recog.py"
export decode_cmd="run.pl"

# Local machine logging to stdout and log file, without any Job scheduling system
elif [ "${cmd_backend}" = stdout ]; then

# The other usage
export train_cmd="stdout.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="stdout.pl"
# Used for "*_recog.py"
export decode_cmd="stdout.pl"


# "qsub" (Sun Grid Engine, or derivation of it)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.

export train_cmd="queue.pl"
export cuda_cmd="queue.pl"
export decode_cmd="queue.pl"


# "qsub" (Torque/PBS.)
elif [ "${cmd_backend}" = pbs ]; then
# The default setting is written in conf/pbs.conf.

export train_cmd="pbs.pl"
export cuda_cmd="pbs.pl"
export decode_cmd="pbs.pl"


# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partition" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by default for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".

export train_cmd="slurm.pl"
export cuda_cmd="slurm.pl"
export decode_cmd="slurm.pl"

elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.

export train_cmd="ssh.pl"
export cuda_cmd="ssh.pl"
export decode_cmd="ssh.pl"

# This is an example of specifying several unique options in the JHU CLSP cluster setup.
# Users can modify/add their own command options according to their cluster environments.
elif [ "${cmd_backend}" = jhu ]; then

export train_cmd="queue.pl --mem 2G"
export cuda_cmd="queue-freegpu.pl --mem 2G --gpu 1 --config conf/queue.conf"
export decode_cmd="queue.pl --mem 4G"

else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi
1 change: 1 addition & 0 deletions egs2/librimix/diar1/conf/decode_diar.yaml
1 change: 1 addition & 0 deletions egs2/librimix/diar1/conf/decode_diar_eda.yaml
11 changes: 11 additions & 0 deletions egs2/librimix/diar1/conf/pbs.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Default configuration
command qsub -V -v PATH -S /bin/bash
option name=* -N $0
option mem=* -l mem=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l ncpus=$0
option num_threads=1 # Do not add anything to qsub_opts
option num_nodes=* -l nodes=$0:ppn=1
default gpu=0
option gpu=0
option gpu=* -l ngpus=$0
12 changes: 12 additions & 0 deletions egs2/librimix/diar1/conf/queue.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -l arch=*64*
option name=* -N $0
option mem=* -l mem_free=$0,ram_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -pe smp $0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
option num_nodes=* -pe mpi $0 # You must set this PE as allocation_rule=1
default gpu=0
option gpu=0
option gpu=* -l gpu=$0 -q g.q
14 changes: 14 additions & 0 deletions egs2/librimix/diar1/conf/slurm.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# Default configuration
command sbatch --export=PATH
option name=* --job-name $0
option time=* --time $0
option mem=* --mem-per-cpu $0
option mem=0
option num_threads=* --cpus-per-task $0
option num_threads=1 --cpus-per-task 1
option num_nodes=* --nodes $0
default gpu=0
option gpu=0 -p cpu
option gpu=* -p gpu --gres=gpu:$0 -c $0 # Recommend allocating more CPU than, or equal to the number of GPU
# note: the --max-jobs-run option is supported as a special case
# by slurm.pl and you don't have to handle it in the config file.
1 change: 1 addition & 0 deletions egs2/librimix/diar1/conf/train_diar.yaml
1 change: 1 addition & 0 deletions egs2/librimix/diar1/conf/train_diar_eda.yaml
1 change: 1 addition & 0 deletions egs2/librimix/diar1/conf/train_diar_eda_adapt.yaml
2 changes: 2 additions & 0 deletions egs2/librimix/diar1/conf/tuning/decode_diar.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
fs: 8000
num_spk: 2 # The number of speakers will be estimated if "num_spk" is "None"
2 changes: 2 additions & 0 deletions egs2/librimix/diar1/conf/tuning/decode_diar_eda.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
fs: 8000
#num_spk: 2 # The number of speakers will be estimated if "num_spk" is "None"
58 changes: 58 additions & 0 deletions egs2/librimix/diar1/conf/tuning/train_diar_2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# This config file is for SA-EEND.
# For the details about SA-EEND, refer to the following paper:
# SA-EEND: https://arxiv.org/pdf/1909.06247.pdf

# network architecture
# encoder related
encoder: transformer
encoder_conf:
input_layer: "linear"
num_blocks: 4
linear_units: 512
dropout_rate: 0.1
output_size: 256 # dimension of attention
attention_heads: 4
attention_dropout_rate: 0.1

# decoder related
decoder: linear

# minibatch related
batch_type: folded
batch_size: 64

# optimization related
optim: adam
accum_grad: 2
grad_clip: 5
max_epoch: 100
optim_conf:
lr: 0.0002
scheduler: warmuplr
scheduler_conf:
warmup_steps: 100000

# others:
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10

patience: none
# The initialization method for model parameters
init: xavier_uniform

specaug: specaug
specaug_conf:
apply_time_warp: false
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
61 changes: 61 additions & 0 deletions egs2/librimix/diar1/conf/tuning/train_diar_eda_5.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# This config file is for EEND-EDA pre-training stage (training on fixed number of speakers).
# For the details about EEND-EDA, refer to the following papers:
# EEND-EDA: https://arxiv.org/pdf/2005.09921.pdf, https://arxiv.org/pdf/2106.10654.pdf

# network architecture
# encoder related
encoder: transformer
encoder_conf:
input_layer: "linear"
num_blocks: 4
linear_units: 512
dropout_rate: 0.1
output_size: 256 # dimension of attention
attention_heads: 4
attention_dropout_rate: 0.1

# attractor related
attractor: rnn
attractor_conf:
unit: 256 # same as encoder output size
layer: 1
dropout: 0.1
attractor_grad: True

# optimization related
optim: adam
grad_clip: 5
max_epoch: 250
optim_conf:
lr: 0.002
scheduler: warmuplr
scheduler_conf:
warmup_steps: 30000

# others:
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10

batch_type: numel
batch_bins: 15000000
accum_grad: 6
patience: none
# The initialization method for model parameters
init: xavier_uniform

specaug: specaug
specaug_conf:
apply_time_warp: false
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
Loading

0 comments on commit 4d6c76a

Please sign in to comment.