Skip to content

Commit

Permalink
JETS; e2e tts model
Browse files Browse the repository at this point in the history
  • Loading branch information
imdanboy committed May 16, 2022
1 parent fffb344 commit a82e78d
Show file tree
Hide file tree
Showing 11 changed files with 3,351 additions and 0 deletions.
218 changes: 218 additions & 0 deletions egs2/kss/tts1/conf/tuning/train_jets.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
# This configuration is for ESPnet2 to train JETS, which
# is truely end-to-end text-to-waveform model. To run
# this config, you need to specify "--tts_task gan_tts"
# option for tts.sh at least and use 24000 hz audio as
# the training data (mainly tested on LJspeech).
# This configuration tested on 4 GPUs (V100) with 32GB GPU
# memory. It takes around 2 weeks to finish the training
# but 100k iters model should generate reasonable results.

##########################################################
# TTS MODEL SETTING #
##########################################################
tts: jets
tts_conf:
# generator related
generator_type: jets_generator
generator_params:
adim: 256 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1024 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1024 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
use_masking: True # whether to apply masking for padded part in loss calculation
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
encoder_type: transformer # encoder type
decoder_type: transformer # decoder type
conformer_rel_pos_type: latest # relative positional encoding type
conformer_pos_enc_layer_type: rel_pos # conformer positional encoding type
conformer_self_attn_layer_type: rel_selfattn # conformer self-attention type
conformer_activation_type: swish # conformer activation type
use_macaron_style_in_conformer: true # whether to use macaron style in conformer
use_cnn_in_conformer: true # whether to use CNN in conformer
conformer_enc_kernel_size: 7 # kernel size in CNN module of conformer-based encoder
conformer_dec_kernel_size: 31 # kernel size in CNN module of conformer-based decoder
init_type: xavier_uniform # initialization type
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: true # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: false # whether to stop the gradient from energy predictor to encoder
generator_out_channels: 1
generator_channels: 512
generator_global_channels: -1
generator_kernel_size: 7
generator_upsample_scales: [8, 8, 2, 2]
generator_upsample_kernel_sizes: [16, 16, 4, 4]
generator_resblock_kernel_sizes: [3, 7, 11]
generator_resblock_dilations: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
generator_use_additional_convs: true
generator_bias: true
generator_nonlinear_activation: "LeakyReLU"
generator_nonlinear_activation_params:
negative_slope: 0.1
generator_use_weight_norm: true
segment_size: 64 # segment size for random windowed discriminator

# discriminator related
discriminator_type: hifigan_multi_scale_multi_period_discriminator
discriminator_params:
scales: 1
scale_downsample_pooling: "AvgPool1d"
scale_downsample_pooling_params:
kernel_size: 4
stride: 2
padding: 2
scale_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [15, 41, 5, 3]
channels: 128
max_downsample_channels: 1024
max_groups: 16
bias: True
downsample_scales: [2, 2, 4, 4, 1]
nonlinear_activation: "LeakyReLU"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False
follow_official_norm: False
periods: [2, 3, 5, 7, 11]
period_discriminator_params:
in_channels: 1
out_channels: 1
kernel_sizes: [5, 3]
channels: 32
downsample_scales: [3, 3, 3, 3, 1]
max_downsample_channels: 1024
bias: True
nonlinear_activation: "LeakyReLU"
nonlinear_activation_params:
negative_slope: 0.1
use_weight_norm: True
use_spectral_norm: False

# loss function related
generator_adv_loss_params:
average_by_discriminators: false # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
discriminator_adv_loss_params:
average_by_discriminators: false # whether to average loss value by #discriminators
loss_type: mse # loss type, "mse" or "hinge"
feat_match_loss_params:
average_by_discriminators: false # whether to average loss value by #discriminators
average_by_layers: false # whether to average loss value by #layers of each discriminator
include_final_outputs: true # whether to include final outputs for loss calculation
mel_loss_params:
fs: 24000 # must be the same as the training data
n_fft: 1024 # fft points
hop_length: 256 # hop size
win_length: null # window length
window: hann # window type
n_mels: 80 # number of Mel basis
fmin: 0 # minimum frequency for Mel basis
fmax: null # maximum frequency for Mel basis
log_base: null # null represent natural log
lambda_adv: 1.0 # loss scaling coefficient for adversarial loss
lambda_mel: 45.0 # loss scaling coefficient for Mel loss
lambda_feat_match: 2.0 # loss scaling coefficient for feat match loss
lambda_var: 1.0
lambda_align: 2.0
# others
sampling_rate: 24000 # needed in the inference for saving wav
cache_generator_outputs: true # whether to cache generator outputs in the training

# extra module for additional inputs
pitch_extract: dio # pitch extractor type
pitch_extract_conf:
reduction_factor: 1
use_token_averaged_f0: false
pitch_normalize: global_mvn # normalizer for the pitch feature
energy_extract: energy # energy extractor type
energy_extract_conf:
reduction_factor: 1
use_token_averaged_energy: false
energy_normalize: global_mvn # normalizer for the energy feature

##########################################################
# OPTIMIZER & SCHEDULER SETTING #
##########################################################
# optimizer setting for generator
optim: adamw
optim_conf:
lr: 2.0e-4
betas: [0.8, 0.99]
eps: 1.0e-9
weight_decay: 0.0
scheduler: exponentiallr
scheduler_conf:
gamma: 0.999875
# optimizer setting for discriminator
optim2: adamw
optim2_conf:
lr: 2.0e-4
betas: [0.8, 0.99]
eps: 1.0e-9
weight_decay: 0.0
scheduler2: exponentiallr
scheduler2_conf:
gamma: 0.999875
generator_first: true # whether to start updating generator first

##########################################################
# OTHER TRAINING SETTING #
##########################################################
num_iters_per_epoch: 1000 # number of iterations per epoch
max_epoch: 1000 # number of epochs
accum_grad: 1 # gradient accumulation
batch_bins: 2000000 # batch bins (feats_type=raw)
batch_type: numel # how to make batch
grad_clip: -1 # gradient clipping norm
grad_noise: false # whether to use gradient noise injection
sort_in_batch: descending # how to sort data in making batch
sort_batch: descending # how to sort created batches
num_workers: 4 # number of workers of data loader
use_amp: false # whether to use pytorch amp
log_interval: 50 # log interval in iterations
keep_nbest_models: 5 # number of models to keep
num_att_plot: 3 # number of attention figures to be saved in every check
seed: 777 # random seed number
patience: null # patience for early stopping
unused_parameters: true # needed for multi gpu case
best_model_criterion: # criterion to save the best models
- - valid
- text2mel_loss
- min
- - train
- text2mel_loss
- min
- - train
- total_count
- max
cudnn_deterministic: false # setting to false accelerates the training speed but makes it non-deterministic
# in the case of GAN-TTS training, we strongly recommend setting to false
cudnn_benchmark: false # setting to true might acdelerate the training speed but sometimes decrease it
# therefore, we set to false as a default (recommend trying both cases)
Loading

0 comments on commit a82e78d

Please sign in to comment.