Recommender system for code completion. The algorithm is based on CSCC: Simple, Efficient, Context Sensitive Code Completion by Asaduzzaman, Muhammad, et al.
Add this to the dependencyManagement section of your pom.xml:
<repositories>
<repository>
<id>tstrass-cscc-recommender</id>
<url>https://packagecloud.io/tstrass/cscc-recommender/maven2</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
Add this to your dependencies in your pom.xml:
<dependency>
<groupId>ch.uzh.ifi.seal.ase</groupId>
<artifactId>cscc</artifactId>
<version>1.0.1</version>
</dependency>
Add this entry anywhere in your build.gradle file:
repositories {
maven {
url "https://packagecloud.io/tstrass/cscc-recommender/maven2"
}
}
Add this to your dependencies in your build.gradle file:
compile 'ch.uzh.ifi.seal.ase:cscc:1.0.1'
- Download KaVE data set from www.kave.cc/datasets, unzip, and put them in
Data/Events
andData/Contexts
. - Download our pre-trained model from the release page and unpack it (
tar -xf cscc-model_z1008_s6_c170503.tar.lmza
) toData/Model
, or train your own. - (optional) Adjust parameters in
ch.uzh.ifi.seal.ase.cscc.utils.CSCCConfiguration
. - See
ch.uzh.ifi.seal.ase.cscc.RunMe
for sample code on how to get code completions and train your own model. - Check the wiki for more information.
This project is licensed under the Apache License 2.0.