Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection
Beijing Jiaotong University, YanShan University, A*Star
Reference github repository for the paper Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection.
@misc{tan2023rethinking,
title={Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection},
author={Chuangchuang Tan and Huan Liu and Yao Zhao and Shikui Wei and Guanghua Gu and Ping Liu and Yunchao Wei},
year={2023},
eprint={2312.10461},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
2024/02
: NPR is accepted by CVPR 2024! Congratulations and thanks to my all co-authors!2024/05
: 🤗Online Demo
Classification environment: We recommend installing the required packages by running the command:
pip install -r requirements.txt
In order to ensure the reproducibility of the results, we provide the following suggestions:
- Docker image: nvcr.io/nvidia/tensorflow:21.02-tf1-py3
- Conda environment: ./pytorch18/bin/python
- Random seed during testing period: Random seed
paper | Url | |
---|---|---|
Train set | CNNDetection CVPR2020 | Baidudrive |
Val set | CNNDetection CVPR2020 | Baidudrive |
Table1 Test | CNNDetection CVPR2020 | Baidudrive |
Table2 Test | FreqNet AAAI2024 | googledrive |
Table3 Test | DIRE ICCV2023 | googledrive |
Table4 Test | UniversalFakeDetect CVPR2023 | googledrive |
Table5 Test | Diffusion1kStep | googledrive |
pip install gdown==4.7.1
chmod 777 ./download_dataset.sh
./download_dataset.sh
Click to expand the folder tree structure.
datasets
|-- ForenSynths_train_val
| |-- train
| | |-- car
| | |-- cat
| | |-- chair
| | `-- horse
| `-- val
| | |-- car
| | |-- cat
| | |-- chair
| | `-- horse
| |-- test
| |-- biggan
| |-- cyclegan
| |-- deepfake
| |-- gaugan
| |-- progan
| |-- stargan
| |-- stylegan
| `-- stylegan2
`-- Generalization_Test
|-- ForenSynths_test # Table1
| |-- biggan
| |-- cyclegan
| |-- deepfake
| |-- gaugan
| |-- progan
| |-- stargan
| |-- stylegan
| `-- stylegan2
|-- GANGen-Detection # Table2
| |-- AttGAN
| |-- BEGAN
| |-- CramerGAN
| |-- InfoMaxGAN
| |-- MMDGAN
| |-- RelGAN
| |-- S3GAN
| |-- SNGAN
| `-- STGAN
|-- DiffusionForensics # Table3
| |-- adm
| |-- ddpm
| |-- iddpm
| |-- ldm
| |-- pndm
| |-- sdv1_new
| |-- sdv2
| `-- vqdiffusion
`-- UniversalFakeDetect # Table4
| |-- dalle
| |-- glide_100_10
| |-- glide_100_27
| |-- glide_50_27
| |-- guided # Also known as ADM.
| |-- ldm_100
| |-- ldm_200
| `-- ldm_200_cfg
|-- Diffusion1kStep # Table5
|-- DALLE
|-- ddpm
|-- guided-diffusion # Also known as ADM.
|-- improved-diffusion # Also known as IDDPM.
`-- midjourney
CUDA_VISIBLE_DEVICES=0 ./pytorch18/bin/python train.py --name 4class-resnet-car-cat-chair-horse --dataroot ./datasets/ForenSynths_train_val --classes car,cat,chair,horse --batch_size 32 --delr_freq 10 --lr 0.0002 --niter 50
Modify the dataroot in test.py.
CUDA_VISIBLE_DEVICES=0 ./pytorch18/bin/python test.py --model_path ./NPR.pth --batch_size {BS}
When testing on AIGCDetectBenchmark, set no_resize and no_crop to True, and set batch_size to 1. To deal with images of odd sizes, add the following code in network/resnet.py.
n,c,w,h = x.shape
if w%2 == 1 : x = x[:,:,:-1,:]
if h%2 == 1 : x = x[:,:,:,:-1]
Generator | CNNSpot | FreDect | Fusing | GramNet | LNP | LGrad | DIRE-G | DIRE-D | UnivFD | RPTCon | NPR |
---|---|---|---|---|---|---|---|---|---|---|---|
ProGAN | 100.00 | 99.36 | 100.00 | 99.99 | 99.67 | 99.83 | 95.19 | 52.75 | 99.81 | 100.00 | 99.9 |
StyleGan | 90.17 | 78.02 | 85.20 | 87.05 | 91.75 | 91.08 | 83.03 | 51.31 | 84.93 | 92.77 | 96.1 |
BigGAN | 71.17 | 81.97 | 77.40 | 67.33 | 77.75 | 85.62 | 70.12 | 49.70 | 95.08 | 95.80 | 87.3 |
CycleGAN | 87.62 | 78.77 | 87.00 | 86.07 | 84.10 | 86.94 | 74.19 | 49.58 | 98.33 | 70.17 | 90.3 |
StarGAN | 94.60 | 94.62 | 97.00 | 95.05 | 99.92 | 99.27 | 95.47 | 46.72 | 95.75 | 99.97 | 99.6 |
GauGAN | 81.42 | 80.57 | 77.00 | 69.35 | 75.39 | 78.46 | 67.79 | 51.23 | 99.47 | 71.58 | 85.4 |
Stylegan2 | 86.91 | 66.19 | 83.30 | 87.28 | 94.64 | 85.32 | 75.31 | 51.72 | 74.96 | 89.55 | 98.1 |
WFIR | 91.65 | 50.75 | 66.80 | 86.80 | 70.85 | 55.70 | 58.05 | 53.30 | 86.90 | 85.80 | 60.7 |
ADM | 60.39 | 63.42 | 49.00 | 58.61 | 84.73 | 67.15 | 75.78 | 98.25 | 66.87 | 82.17 | 84.9 |
Glide | 58.07 | 54.13 | 57.20 | 54.50 | 80.52 | 66.11 | 71.75 | 92.42 | 62.46 | 83.79 | 96.7 |
Midjourney | 51.39 | 45.87 | 52.20 | 50.02 | 65.55 | 65.35 | 58.01 | 89.45 | 56.13 | 90.12 | 92.6 |
SDv1.4 | 50.57 | 38.79 | 51.00 | 51.70 | 85.55 | 63.02 | 49.74 | 91.24 | 63.66 | 95.38 | 97.4 |
SDv1.5 | 50.53 | 39.21 | 51.40 | 52.16 | 85.67 | 63.67 | 49.83 | 91.63 | 63.49 | 95.30 | 97.5 |
VQDM | 56.46 | 77.80 | 55.10 | 52.86 | 74.46 | 72.99 | 53.68 | 91.90 | 85.31 | 88.91 | 90.1 |
Wukong | 51.03 | 40.30 | 51.70 | 50.76 | 82.06 | 59.55 | 54.46 | 90.90 | 70.93 | 91.07 | 91.7 |
DALLE2 | 50.45 | 34.70 | 52.80 | 49.25 | 88.75 | 65.45 | 66.48 | 92.45 | 50.75 | 96.60 | 99.6 |
Average | 70.78 | 64.03 | 68.38 | 68.67 | 83.84 | 75.34 | 68.68 | 71.53 | 78.43 | 89.31 | 91.7 |
(1) Change "resize" to "translate and duplicate". (2) Set random seed to 70. (3) During testing, set no_crop to False.
(1)
dset = datasets.ImageFolder(
root,
transforms.Compose([
# rz_func,
transforms.Lambda(lambda img: translate_duplicate(img, opt.cropSize)),
crop_func,
flip_func,
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]))
import math
def translate_duplicate(img, cropSize):
if min(img.size) < cropSize:
width, height = img.size
new_width = width * math.ceil(cropSize/width)
new_height = height * math.ceil(cropSize/height)
new_img = Image.new('RGB', (new_width, new_height))
for i in range(0, new_width, width):
for j in range(0, new_height, height):
new_img.paste(img, (i, j))
return new_img
else:
return img
(2) Set random seed to 70.
(3) During testing, set no_crop to False. And set test config
vals = ['ADM', 'biggan', 'glide', 'midjourney', 'sdv5', 'vqdm', 'wukong']
multiclass = [ 0, 0, 0, 0, 0, 0, 0 ]
./pytorch18/bin/python train.py --dataroot {GenImage Path} --name sdv4_bs32_ --batch_size 32 --lr 0.0002 --niter 1 --cropSize 224 --classes sdv4
Train with sdv4 as the training set, using a random seed of 70. Pretrained checkpoint.
Generator | Acc. | A.P. |
---|---|---|
ADM | 87.8 | 96.0 |
biggan | 80.7 | 89.8 |
glide | 93.2 | 99.1 |
midjourney | 91.7 | 97.9 |
sdv5 | 94.4 | 99.9 |
vqdm | 88.7 | 96.1 |
wukong | 94.0 | 99.7 |
Mean | 90.1 | 96.9 |
This repository borrows partially from the CNNDetection.