Skip to content

chunyuw/ELECTRA-DTA

 
 

Repository files navigation

ELECTRA-DTA

In this github repository, you will see all the source code. However, the trained data is too big (total 85G). The entire trained data is in the dataset subfolder of the following url.

http://iilab.hit.edu.cn/dtadata/ElectraDTA/

dependency

conda environment

conda create -n ElectraDTA python=3.6
conda activate ElectraDTA

packages

pip install tensorflow-gpu==1.14
pip install keras==2.2.5
pip install rlscore sklearn tqdm

clone

git clone https://github.com/IILab-Resource/ELECTRA-DTA

Run scripts

python DTA-BindingDB-Ki.py: this script use the refined BindingDB dataset with average 12 layers electra embedding. python DTA-BindingDB-Full-average.py: this script use the original BindingDB dataset with average 12 layers electra embedding. python DTA-KIBA-Full.py : this script use the original BindingDB dataset with average 12 layers electra embedding.

for other dataset and embeddings, please change the dataset path in the python script files.
Change the dataset:

data_file = 'dataset/BindingDB-full-data.csv'

to

data_file = 'dataset/davis-full-data.csv'

change the embedding:

protein_seqs_emb  = load_dict('dataset/embedding256-12layers/atomwise_kiba-full_protein_maxlen1022_dim256-layer{}.pkl'.format(embedding_no))
smiles_seqs_emb = load_dict('dataset/embedding256-12layers/atomwise_kiba-full_smiles_maxlen100_dim256-layer{}.pkl'.format(embedding_no))

to

protein_seqs_emb  = load_dict('dataset/embedding256-12layers/atomwise_davis-full_protein_maxlen1022_dim256-layer{}.pkl'.format(embedding_no))
smiles_seqs_emb = load_dict('dataset/embedding256-12layers/atomwise_davis-full_smiles_maxlen100_dim256-layer{}.pkl'.format(embedding_no))

download dataset

cd ELECTRA-DTA
wget -np -nH --cut-dirs 2 -r -A .csv,.pkl http://iilab.hit.edu.cn/dtadata/ElectraDTA

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 79.1%
  • Shell 20.9%