Skip to content

This is the official repository for our publication "The IVI Lab entry to the GENEA Challenge 2022 – A Tacotron2 Based Method for Co-Speech Gesture Generation With Locality-Constraint Attention Mechanism."

License

Notifications You must be signed in to change notification settings

cjerry1243/Tacotron2-SpeechGesture

Repository files navigation

Tacotron2-SpeechGesture

This is the official repository for our paper "The IVI Lab entry to the GENEA Challenge 2022 – A Tacotron2 Based Method for Co-Speech Gesture Generation With Locality-Constraint Attention Mechanism."

This repository provides the code for co-speech gesture prediction using the data from GENEA Challenge 2022.

This work is also the offical baseline for GENEA Challenge 2023.

Demonstration of Our Results (make sure the audio is on while playing!!)

tst_2022_v1_036_0000-1800_720p.mp4

(from tst_2022_v1_036.bvh)

Environment

  • Ubuntu 20.04
  • Python 3.9
  • Cuda 11.4

To install the required libraries, activate your python environment and use the following command:

pip install -r requirements.txt

Note: This repository is only tested under the above environment and package settings. It may still work under different configurations.

Data Processing

Download GENEA22 Data

  • Get the dataset (v1) from GENEA Challenge 2022 and unzip all files. Put the "dataset_v1" under this repository. Create a "tst" folder under the "dataset_v1" directory and put all test data inside.

Your file hierarchy should look like the following:

dataset_v1/
    trn/
        bvh/*.bvh
        tsv/*.tsv
        wav/*.wav
        trn_metadata.csv
    val/
        bvh/*.bvh
        tsv/*.tsv
        wav/*.wav
        val_metadata.csv
    tst/
        tsv/*.tsv
        wav/*.wav
        tst_metadata.csv

FastText Word Embeddings

Download and unzip the word embedding from FastText. Put the file "crawl-300d-2M.vec" under the project directory.

Data Preprocessing

Preprocess the data and save them as h5 files. (This might take a while)

python process_data.py -d path_to_your_dataset_v1 

By default, the three h5 files (trn_v1.h5, val_v1.h5, and tst_v1.h5) should be generated under the project directory.

Alternatively, you can simply download our processed data.

Calculate audio statistics based on trn_v1.h5:

python calculate_audio_statistics.py

Create Motion Processing Pipelines

We will use the following command to generate pipelines (*.sav) for converting our motion representations to euler rotations.

python create_pipeline.py

Test

We predict all gestures for both tracks (full and upper body) given the processed test data (tst_v1.h5).

  • Download and unzip the checkpoints. Put the "fullbody" and "upperbody" folders under Tacotron2/

  • Navigate to Tacotron2/ folder.

cd Tacotron2
  • Predicting fullbody gestures:
python generate_all_gestures.py -ch fullbody/ckpt/checkpoint_21000.pt -t full
  • Predicting upperbody gestures:
python generate_all_gestures.py -ch upperbody/ckpt/checkpoint_22000.pt -t upper

The bvh files should be generated under "Tacotron2/outputs/" folder. By defaut, the cuda device "0" is used. If you prefer to use a different cuda device for inference, please edit line 23 in the Tacotron2/common/hparams.py

Note: You can import the bvh files to Blender to visualize the gesture motions. If you would like to render the motions, please reach out to the repository provided by GENEA Challenge 2022.

Train

Edit the configurations in Tacotron2/common/hparams.py.

  1. Enter the "output_directory" and "device" of your own choice.

  2. Add the "checkpoint_path" if you would like to resume training.

  3. Make sure to edit "n_acoustic_feat_dims", 78 for full body and 57 for upper body.

  4. Then train the model using the following command:

cd Tacotron2
python train_genea22.py

The weights and logs can be found under the "output_directory". It takes roughly 20k~30k iterations to produce decent results.

Dyadic Gestures

We adapt the system to co-speech gesture generation in a dyadic setting (a main speaker and an interlocutor).

Please refer to the official baseline provided by GENEA23.

Citation

Please cite our paper if you find our code useful.

@inproceedings{chang2022ivi,
  title={The IVI Lab entry to the GENEA Challenge 2022--A Tacotron2 based method for co-speech gesture generation with locality-constraint attention mechanism},
  author={Chang, Che-Jui and Zhang, Sen and Kapadia, Mubbasir},
  booktitle={Proceedings of the 2022 International Conference on Multimodal Interaction},
  pages={784--789},
  year={2022}
}

About

This is the official repository for our publication "The IVI Lab entry to the GENEA Challenge 2022 – A Tacotron2 Based Method for Co-Speech Gesture Generation With Locality-Constraint Attention Mechanism."

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages