This repository is official PyTorch implementation of PDAE (NeurIPS 2022).
@inproceedings{zhang2022unsupervised,
title={Unsupervised Representation Learning from Pre-trained Diffusion Probabilistic Models},
author={Zhang, Zijian and Zhao, Zhou and Lin, Zhijie},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}
We use the LMDB ready-to-use datasets provided by Diff-AE (https://github.com/phizaz/diffae#lmdb-datasets).
The directory structure should be:
data
├─horse
| ├─data.mdb
| └lock.mdb
├─ffhq
| ├─data.mdb
| └lock.mdb
├─celebahq
| ├─CelebAMask-HQ-attribute-anno.txt
| ├─data.mdb
| └lock.mdb
├─celeba64
| ├─data.mdb
| └lock.mdb
├─bedroom
| ├─data.mdb
| └lock.mdb
pre-trained-dpms (required)
trained-models (optional)
You should put download in the root dicretory of this project and maintain their directory structure as shown in Google Drive.
pip install -r requirements.txt
To train DDPM, run this command:
bash scripts/dist_train_regular_diffusion.sh 1 0 4
To train PDAE, run this command:
bash scripts/dist_train_representation_learning.sh 1 0 4
To train a classifier for manipulation, run this command:
bash scripts/dist_train_manipulation.sh 1 0 4
To train a latent DPM, run this command:
bash scripts/dist_train_latent_diffusion.sh 1 0 4
You can change the config file and run path in the script file.
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/autoencoding_example.py"
bash scripts/dist_sample.sh 1 0 1
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/autoencoding_eval.py"
bash scripts/dist_sample.sh 1 0 4
PDAE achieves autoencoding reconstruction SOTA performance of SSIM(0.994) and MSE(3.84e-5) when using inferred
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/denoise_one_step.py"
bash scripts/dist_sample.sh 1 0 1
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/gap_measure.py"
bash scripts/dist_sample.sh 1 0 4
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/interpolation.py"
bash scripts/dist_sample.sh 1 0 1
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/manipulation.py"
bash scripts/dist_sample.sh 1 0 1
# modify scripts/dist_sample.sh to "${ROOT_DIR}/sampler/unconditional_sample.py"
bash scripts/dist_sample.sh 1 0 4