A jmespath-ts fork, repackaged and ported to Deno.
The src/
directory is published to deno.land.
The test/
directory contains the upstream unit tests.
This library should be useful for JSON-heavy APIs such as AWS.
In the process of porting, I changed the AST types to leverage descriminated unions, in order to reduce usage of casts and any. The original library used a tsconfig to disable some implicit-any checks which isn't acceptable in deno libraries.
Since then, upstream has also improved their typing, so the difference between this fork and upstream is somewhat smaller now.
@metrichor/jmespath is a typescript implementation of the JMESPath spec.
JMESPath is a query language for JSON. It will take a JSON document as input and transform it into another JSON document given a JMESPath expression.
npm install @metrichor/jmespath
/* using ES modules */
import { search } from '@metrichor/jmespath';
/* using CommonJS modules */
const search = require('@metrichor/jmespath').search;
search({foo: {bar: {baz: [0, 1, 2, 3, 4]}}}, "foo.bar.baz[2]")
// OUTPUTS: 2
In the example we gave the search
function input data of
{foo: {bar: {baz: [0, 1, 2, 3, 4]}}}
as well as the JMESPath
expression foo.bar.baz[2]
, and the search
function evaluated
the expression against the input data to produce the result 2
.
The JMESPath language can do a lot more than select an element from a list. Here are a few more examples:
import { search } from '@metrichor/jmespath';
/* --- EXAMPLE 1 --- */
let JSON_DOCUMENT = {
foo: {
bar: {
baz: [0, 1, 2, 3, 4]
}
}
};
search(JSON_DOCUMENT, "foo.bar");
// OUTPUTS: { baz: [ 0, 1, 2, 3, 4 ] }
/* --- EXAMPLE 2 --- */
JSON_DOCUMENT = {
"foo": [
{"first": "a", "last": "b"},
{"first": "c", "last": "d"}
]
};
search(JSON_DOCUMENT, "foo[*].first")
// OUTPUTS: [ 'a', 'c' ]
/* --- EXAMPLE 3 --- */
JSON_DOCUMENT = {
"foo": [
{"age": 20},
{"age": 25},
{"age": 30},
{"age": 35},
{"age": 40}
]
}
search(JSON_DOCUMENT, "foo[?age > `30`]");
// OUTPUTS: [ { age: 35 }, { age: 40 } ]
You can precompile all your expressions ready for use later on. the compile
function takes a JMESPath expression and returns an abstract syntax tree that
can be used by the TreeInterpreter function
import { compile, TreeInterpreter } from '@metrichor/jmespath';
const ast = compile('foo.bar');
TreeInterpreter.search(ast, {foo: {bar: 'BAZ'}})
// RETURNS: "BAZ"
-
registerFunction(functionName: string, customFunction: RuntimeFunction, signature: InputSignature[]): void
Extend the list of built in JMESpath expressions with your own functions.
import {search, registerFunction, TYPE_NUMBER} from '@metrichor/jmespath' search({ foo: 60, bar: 10 }, 'divide(foo, bar)') // THROWS ERROR: Error: Unknown function: divide() registerFunction( 'divide', // FUNCTION NAME (resolvedArgs) => { // CUSTOM FUNCTION const [dividend, divisor] = resolvedArgs; return dividend / divisor; }, [{ types: [TYPE_NUMBER] }, { types: [TYPE_NUMBER] }] //SIGNATURE ); search({ foo: 60,bar: 10 }, 'divide(foo, bar)'); // OUTPUTS: 6
Optional arguments are supported by setting
{..., optional: true}
in argument signaturesregisterFunction( 'divide', (resolvedArgs) => { const [dividend, divisor] = resolvedArgs; return dividend / divisor ?? 1; //OPTIONAL DIVISOR THAT DEFAULTS TO 1 }, [{ types: [TYPE_NUMBER] }, { types: [TYPE_NUMBER], optional: true }] //SIGNATURE ); search({ foo: 60, bar: 10 }, 'divide(foo)'); // OUTPUTS: 60
search({foo: {bar: 999}, baz: [1, 2, 3]}, '$.baz[*].[@, $.foo.bar]')
// OUTPUTS:
// [ [ 1, 999 ], [ 2, 999 ], [ 3, 999 ] ]
The example above only show a small amount of what a JMESPath expression can do. If you want to take a tour of the language, the best place to go is the JMESPath Tutorial.
One of the best things about JMESPath is that it is implemented in many different programming languages including python, ruby, php, lua, etc. To see a complete list of libraries, check out the JMESPath libraries page.
And finally, the full JMESPath specification can be found on the JMESPath site.