Skip to content

clsk/google-smart-reply-2017

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

google-smart-reply-2017

Google smart reply paper (2017) implementation in tensorflow

Getting started

  1. Get Ubuntu corpus dataset for testing from here
wget https://s3.amazonaws.com/ngv-public/data.zip -O data.zip
  1. Unzip and move data files wherever you want.
unzip data.zip -d .
  1. Install conda environment
conda create -n sr python=3.6
pip install -r requirements.txt

source activate sr
  1. Update the path variables with links to the data and where you want to save model output
# main_dual_encoder_dense.py
# path params
parser.add_argument('--root_dir', default='')
parser.add_argument('--dataset_train_path', default='')
parser.add_argument('--dataset_test_path', default='')
parser.add_argument('--dataset_val_path', default='')
parser.add_argument('--vocab_path', default='')

parser.add_argument('--model_save_dir', default='')
parser.add_argument('--test_tube_dir', default='')
  1. Start training
python main_dual_encoder_dense.py

About

Google smart reply 2017 implementation in tensorflow

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages