Google smart reply paper (2017) implementation in tensorflow
- Get Ubuntu corpus dataset for testing from here
wget https://s3.amazonaws.com/ngv-public/data.zip -O data.zip
- Unzip and move data files wherever you want.
unzip data.zip -d .
- Install conda environment
conda create -n sr python=3.6
pip install -r requirements.txt
source activate sr
- Update the path variables with links to the data and where you want to save model output
# main_dual_encoder_dense.py
# path params
parser.add_argument('--root_dir', default='')
parser.add_argument('--dataset_train_path', default='')
parser.add_argument('--dataset_test_path', default='')
parser.add_argument('--dataset_val_path', default='')
parser.add_argument('--vocab_path', default='')
parser.add_argument('--model_save_dir', default='')
parser.add_argument('--test_tube_dir', default='')
- Start training
python main_dual_encoder_dense.py