Skip to content
This repository has been archived by the owner on Sep 27, 2019. It is now read-only.

Add first implementation of augmentedNN to predict selectivity #1473

Merged
merged 11 commits into from
Sep 26, 2018
115 changes: 115 additions & 0 deletions src/brain/modelgen/augmented_nn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
#===----------------------------------------------------------------------===#
#
# Peloton
#
# AugmentedNN.py
#
# Identification: src/brain/modelgen/AugmentedNN.py
#
# Copyright (c) 2015-2018, Carnegie Mellon University Database Group
#
#===----------------------------------------------------------------------===#

import tensorflow as tf
import functools
import os
import argparse

def lazy_property(function):
attribute = '_cache_' + function.__name__

@property
@functools.wraps(function)
def decorator(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)

return decorator

class AugmentedNN:

def __init__(self, column_num, order=1, neuron_num=16, lr=0.1, **kwargs):
tf.reset_default_graph()
self.data = tf.placeholder(tf.float32, [None, column_num*2], name="data_")
self.target = tf.placeholder(tf.float32, [None, 1], name="target_")
self._column_num = column_num
self._order = order
self._neuron_num = neuron_num
self._lr = tf.placeholder_with_default(lr, shape=None,
name="learn_rate_")
self.tf_init = tf.global_variables_initializer
self.prediction
self.loss
self.optimize

@staticmethod
def jump_activation(k):
"""
This is an activation function used to learn discontinuous functions.
Reference: https://dl.acm.org/citation.cfm?id=2326898
"""
def jump_activation_k(x):
return tf.pow(tf.maximum(0.0, 1-tf.exp(-x)), k)
return jump_activation_k

@lazy_property
def prediction(self):
net = self.data
kernel_init = tf.random_normal_initializer(mean=0.0001, stddev=0.0001)
with tf.name_scope("hidden_layer"):
net_shape = tf.shape(net)
bsz = net_shape[0]

h1_layers = []
for i in range(1, self._order+1):
h1 = tf.layers.dense(net, self._neuron_num,
activation=self.jump_activation(i),
kernel_initializer=kernel_init)
h1_layers.append(h1)
h1_layers = tf.concat(h1_layers, 1)
with tf.name_scope("output_layer"):
net = tf.layers.dense(h1_layers, 1,
activation=self.jump_activation(1),
kernel_initializer=kernel_init)
net = tf.reshape(net, [bsz, -1], name="pred_")
return net

@lazy_property
def loss(self):
loss = tf.reduce_mean(tf.squared_difference(self.target, self.prediction), name='lossOp_')
return loss

@lazy_property
def optimize(self):
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
optimizer = tf.train.AdagradOptimizer(learning_rate=self._lr)
return optimizer.apply_gradients(zip(gradients,
params), name="optimizeOp_")

def write_graph(self, dir):
fname = "{}.pb".format(self.__repr__())
abs_path = os.path.join(dir, fname)
if not os.path.exists(abs_path):
tf.train.write_graph(tf.get_default_graph(),
dir, fname, False)

def __repr__(self):
return "augmented_nn"

def main():
parser = argparse.ArgumentParser(description='AugmentedNN Model Generator')

parser.add_argument('--column_num', type=int, default=1, help='Number of augmentedNN Hidden units')
parser.add_argument('--order', type=int, default=3, help='Max order of activation function')
parser.add_argument('--neuron_num', type=int, default=20, help='Number of neurons in hidden layer')
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate')
parser.add_argument('graph_out_path', type=str, help='Path to write graph output', nargs='+')
args = parser.parse_args()
model = AugmentedNN(args.column_num, args.order, args.neuron_num, args.lr)
model.tf_init()
model.write_graph(' '.join(args.graph_out_path))

if __name__ == '__main__':
main()
167 changes: 167 additions & 0 deletions src/brain/selectivity/augmented_nn.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
//===----------------------------------------------------------------------===//
//
// Peloton
//
// augmented_nn.cpp
//
// Identification: src/brain/workload/augmented_nn.cpp
//
// Copyright (c) 2015-2018, Carnegie Mellon University Database Group
//
//===----------------------------------------------------------------------===//

#include "brain/selectivity/augmented_nn.h"
#include "brain/util/model_util.h"
#include "brain/util/tf_session_entity/tf_session_entity.h"
#include "brain/util/tf_session_entity/tf_session_entity_input.h"
#include "brain/util/tf_session_entity/tf_session_entity_output.h"
#include "util/file_util.h"

namespace peloton {
namespace brain {

AugmentedNN::AugmentedNN(int column_num, int order, int neuron_num,
float learn_rate, int batch_size, int epochs)
: BaseTFModel("src/brain/modelgen", "src/brain/modelgen/augmented_nn.py",
"src/brain/modelgen/augmented_nn.pb"),
column_num_(column_num),
order_(order),
neuron_num_(neuron_num),
learn_rate_(learn_rate),
batch_size_(batch_size),
epochs_(epochs) {
GenerateModel(ConstructModelArgsString());
// Import the Model
tf_session_entity_->ImportGraph(graph_path_);
// Initialize the model
TFInit();
}

std::string AugmentedNN::ConstructModelArgsString() const {
std::stringstream args_str_builder;
args_str_builder << " --column_num " << column_num_;
args_str_builder << " --order " << order_;
args_str_builder << " --neuron_num " << neuron_num_;
args_str_builder << " --lr " << learn_rate_;
args_str_builder << " " << this->modelgen_path_;
return args_str_builder.str();
}

std::string AugmentedNN::ToString() const {
std::stringstream model_str_builder;
model_str_builder << "augmented_nn(";
model_str_builder << "column_num = " << column_num_;
model_str_builder << ", order = " << order_;
model_str_builder << ", neuron_num = " << neuron_num_;
model_str_builder << ", lr = " << learn_rate_;
model_str_builder << ", batch_size = " << batch_size_;
model_str_builder << ")";
return model_str_builder.str();
}

// returns a batch
void AugmentedNN::GetBatch(const matrix_eig &mat, size_t batch_offset,
size_t bsz, matrix_eig &data,
matrix_eig &target) {
size_t row_idx = batch_offset * bsz;
data = mat.block(row_idx, 0, bsz, mat.cols() - 1);
target = mat.block(row_idx, mat.cols() - 1, bsz, 1);
}

// backpropagate once
void AugmentedNN::Fit(const matrix_eig &X, const matrix_eig &y, int bsz) {
auto data_batch = EigenUtil::Flatten(X);
auto target_batch = EigenUtil::Flatten(y);
std::vector<int64_t> dims_data{bsz, X.cols()};
std::vector<int64_t> dims_target{bsz, 1};
std::vector<TfFloatIn *> inputs_optimize{
new TfFloatIn(data_batch.data(), dims_data, "data_"),
new TfFloatIn(target_batch.data(), dims_target, "target_"),
new TfFloatIn(learn_rate_, "learn_rate_")};
tf_session_entity_->Eval(inputs_optimize, "optimizeOp_");
std::for_each(inputs_optimize.begin(), inputs_optimize.end(), TFIO_Delete);
}

float AugmentedNN::TrainEpoch(const matrix_eig &mat) {
std::vector<float> losses;
// Obtain relevant metadata
int min_allowed_bsz = 1;
int bsz = std::min((int)mat.rows(), std::max(batch_size_, min_allowed_bsz));
int number_of_batches = mat.rows() / bsz;
int num_cols = mat.cols() - 1;

std::vector<matrix_eig> y_batch, y_hat_batch;
// Run through each batch and compute loss/apply backprop
for (int batch_offset = 0; batch_offset < number_of_batches;
++batch_offset) {
matrix_eig data_batch, target_batch;
GetBatch(mat, batch_offset, bsz, data_batch, target_batch);

std::vector<int64_t> dims_data{bsz, num_cols};
std::vector<int64_t> dims_target{bsz, 1};

Fit(data_batch, target_batch, bsz);

matrix_eig y_hat_eig = Predict(data_batch, bsz);
y_hat_batch.push_back(y_hat_eig);
y_batch.push_back(target_batch);
}
matrix_eig y = EigenUtil::VStack(y_batch);
matrix_eig y_hat = EigenUtil::VStack(y_hat_batch);
return ModelUtil::MeanSqError(y, y_hat);

}

// x: [bsz, 2]
// return: [bsz, 1]
matrix_eig AugmentedNN::Predict(const matrix_eig &X, int bsz) const {
auto data_batch = EigenUtil::Flatten(X);
std::vector<int64_t> dims_data{bsz, X.cols()};
std::vector<int64_t> dims_target{bsz, 1};

std::vector<TfFloatIn *> inputs_predict{
new TfFloatIn(data_batch.data(), dims_data, "data_")};
auto output_predict = new TfFloatOut(dims_target, "pred_");
// Obtain predicted values
auto out = tf_session_entity_->Eval(inputs_predict, output_predict);

matrix_t y_hat;
for (int res_idx = 0; res_idx < bsz; res_idx++) {
vector_t res = {out[res_idx]};
y_hat.push_back(res);
}
std::for_each(inputs_predict.begin(), inputs_predict.end(), TFIO_Delete);
TFIO_Delete(output_predict);
return EigenUtil::ToEigenMat(y_hat);
}

float AugmentedNN::ValidateEpoch(const matrix_eig &mat) {
// Obtain relevant metadata
int min_allowed_bsz = 1;
int bsz = std::min((int)mat.rows(), std::max(batch_size_, min_allowed_bsz));
int number_of_batches = mat.rows() / bsz;
int num_cols = mat.cols() - 1;

std::vector<matrix_eig> y_batch, y_hat_batch;
// Apply Validation
// Run through each batch and compute loss/apply backprop
for (int batch_offset = 0; batch_offset < number_of_batches;
++batch_offset) {
matrix_eig data_batch, target_batch;
GetBatch(mat, batch_offset, bsz, data_batch, target_batch);

std::vector<int64_t> dims_data{bsz, num_cols};
std::vector<int64_t> dims_target{bsz, 1};

matrix_eig y_hat_eig = Predict(data_batch, bsz);
y_hat_batch.push_back(y_hat_eig);
y_batch.push_back(target_batch);
}
matrix_eig y = EigenUtil::VStack(y_batch);
matrix_eig y_hat = EigenUtil::VStack(y_hat_batch);
return ModelUtil::MeanSqError(y, y_hat);

}
} // namespace brain
} // namespace peloton

27 changes: 27 additions & 0 deletions src/brain/selectivity/selectivity_defaults.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
//===----------------------------------------------------------------------===//
//
// Peloton
//
// selectivity_defaults.cpp
//
// Identification: src/brain/workload/selectivity_defaults.cpp
//
// Copyright (c) 2015-2018, Carnegie Mellon University Database Group
//
//===----------------------------------------------------------------------===//

#include "brain/selectivity/selectivity_defaults.h"

namespace peloton {
namespace brain {

const int AugmentedNNDefaults::COLUMN_NUM = 1;
const int AugmentedNNDefaults::ORDER = 1;
const int AugmentedNNDefaults::NEURON_NUM = 16;
const float AugmentedNNDefaults::LR = 0.1f;
const int AugmentedNNDefaults::BATCH_SIZE = 256;
const int AugmentedNNDefaults::EPOCHS = 600;


} // namespace brain
} // namespace peloton
80 changes: 40 additions & 40 deletions src/brain/workload/workload_defaults.cpp
Original file line number Diff line number Diff line change
@@ -1,40 +1,40 @@
//===----------------------------------------------------------------------===//
//
// Peloton
//
// workload_defaults.cpp
//
// Identification: src/brain/workload/workload_defaults.cpp
//
// Copyright (c) 2015-2018, Carnegie Mellon University Database Group
//
//===----------------------------------------------------------------------===//

#include "brain/workload/workload_defaults.h"

namespace peloton {
namespace brain {

const int CommonWorkloadDefaults::HORIZON = 216;
const int CommonWorkloadDefaults::INTERVAL = 100;
const int CommonWorkloadDefaults::PADDLING_DAYS = 7;
const int CommonWorkloadDefaults::ESTOP_PATIENCE = 10;
const float CommonWorkloadDefaults::ESTOP_DELTA = 0.01f;

const int LSTMWorkloadDefaults::NFEATS = 3;
const int LSTMWorkloadDefaults::NENCODED = 20;
const int LSTMWorkloadDefaults::NHID = 20;
const int LSTMWorkloadDefaults::NLAYERS = 2;
const float LSTMWorkloadDefaults::LR = 0.01f;
const float LSTMWorkloadDefaults::DROPOUT_RATE = 0.5f;
const float LSTMWorkloadDefaults::CLIP_NORM = 0.5f;
const int LSTMWorkloadDefaults::BATCH_SIZE = 12;
const int LSTMWorkloadDefaults::BPTT = 90;
const int LSTMWorkloadDefaults::EPOCHS = 100;

const int LinearRegWorkloadDefaults::BPTT = 90;

const int KernelRegWorkloadDefaults::BPTT = 90;

} // namespace brain
} // namespace peloton
//===----------------------------------------------------------------------===//
//
// Peloton
//
// workload_defaults.cpp
//
// Identification: src/brain/workload/workload_defaults.cpp
//
// Copyright (c) 2015-2018, Carnegie Mellon University Database Group
//
//===----------------------------------------------------------------------===//
#include "brain/workload/workload_defaults.h"
namespace peloton {
namespace brain {
const int CommonWorkloadDefaults::HORIZON = 216;
const int CommonWorkloadDefaults::INTERVAL = 100;
const int CommonWorkloadDefaults::PADDLING_DAYS = 7;
const int CommonWorkloadDefaults::ESTOP_PATIENCE = 10;
const float CommonWorkloadDefaults::ESTOP_DELTA = 0.01f;
const int LSTMWorkloadDefaults::NFEATS = 3;
const int LSTMWorkloadDefaults::NENCODED = 20;
const int LSTMWorkloadDefaults::NHID = 20;
const int LSTMWorkloadDefaults::NLAYERS = 2;
const float LSTMWorkloadDefaults::LR = 0.01f;
const float LSTMWorkloadDefaults::DROPOUT_RATE = 0.5f;
const float LSTMWorkloadDefaults::CLIP_NORM = 0.5f;
const int LSTMWorkloadDefaults::BATCH_SIZE = 12;
const int LSTMWorkloadDefaults::BPTT = 90;
const int LSTMWorkloadDefaults::EPOCHS = 100;
const int LinearRegWorkloadDefaults::BPTT = 90;
const int KernelRegWorkloadDefaults::BPTT = 90;
} // namespace brain
} // namespace peloton
Loading