We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
This example the recipe in the vignette
epipredict/vignettes/preprocessing-and-models.Rmd
Line 323 in 6455828
library(recipes) library(epipredict) jhu <- case_death_rate_subset %>% dplyr::filter( time_value >= "2021-06-04", time_value <= "2021-12-31", geo_value %in% c("ca", "fl", "tx", "ny", "nj") ) %>% mutate(geo_value_factor = as.factor(geo_value)) r <- recipe(jhu) %>% add_role(time_value, new_role = "predictor") %>% step_dummy(geo_value_factor, role = "predictor") %>% step_growth_rate(case_rate, role = "none", prefix = "gr_") %>% step_epi_lag(starts_with("gr_"), lag = c(0, 7, 14)) %>% step_epi_ahead(starts_with("gr_"), ahead = 7, role = "none") %>% # note recipes::step_cut() has a bug in it, or we could use that here step_mutate( response = cut( ahead_7_gr_7_rel_change_case_rate, breaks = c(-Inf, -0.2, 0.25, Inf) / 7, # division gives weekly not daily labels = c("down", "flat", "up") ), role = "outcome" ) %>% step_rm(has_role("none"), has_role(NA)) %>% step_epi_naomit() r #> #> ── Epi Recipe ────────────────────────────────────────────────────────────────── #> #> ── Inputs #> Number of variables by role #> predictor: 1 #> geo_value: 1 #> time_value: 1 #> undeclared role: 3 #> #> ── Operations #> $terms #> <list_of<quosure>> #> #> [[1]] #> <quosure> #> expr: ^geo_value_factor #> env: 0x12d1a6128 #> #> #> $role #> [1] "predictor" #> #> $trained #> [1] FALSE #> #> $one_hot #> [1] FALSE #> #> $preserve #> [1] FALSE #> #> $naming #> function (var, lvl, ordinal = FALSE, sep = "_") #> { #> args <- vctrs::vec_recycle_common(var, lvl) #> var <- args[[1]] #> lvl <- args[[2]] #> if (!ordinal) { #> nms <- paste(var, make.names(lvl), sep = sep) #> } #> else { #> nms <- paste0(var, names0(length(lvl), sep)) #> } #> nms #> } #> <bytecode: 0x12d048b48> #> <environment: namespace:recipes> #> #> $levels #> NULL #> #> $keep_original_cols #> [1] FALSE #> #> $skip #> [1] FALSE #> #> $id #> [1] "dummy_rgGr9" #> #> attr(,"class") #> [1] "step_dummy" "step" #> $role #> [1] "outcome" #> #> $trained #> [1] FALSE #> #> $inputs #> <list_of<quosure>> #> #> $response #> <quosure> #> expr: ^cut(ahead_7_gr_7_rel_change_case_rate, breaks = c(-Inf, -0.2, 0.25, #> Inf) / 7, labels = c("down", "flat", "up")) #> env: 0x12d1a63c8 #> #> #> $skip #> [1] FALSE #> #> $id #> [1] "mutate_MVXkG" #> #> attr(,"class") #> [1] "step_mutate" "step" #> $terms #> <list_of<quosure>> #> #> [[1]] #> <quosure> #> expr: ^has_role("none") #> env: 0x12d1a6470 #> #> [[2]] #> <quosure> #> expr: ^has_role(NA) #> env: 0x12d1a6470 #> #> #> $role #> [1] NA #> #> $trained #> [1] FALSE #> #> $removals #> NULL #> #> $skip #> [1] FALSE #> #> $id #> [1] "rm_mV3xQ" #> #> attr(,"class") #> [1] "step_rm" "step" #> 1. Calculating growth_rate for: case_rate by rel_change #> 2. Lagging: starts_with("gr_") by 0, 7, 14 #> 3. Leading: starts_with("gr_") by 7 #> 4. • Removing rows with NA values in: all_predictors() #> 5. • Removing rows with NA values in: all_outcomes()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
This example the recipe in the vignette
epipredict/vignettes/preprocessing-and-models.Rmd
Line 323 in 6455828
The text was updated successfully, but these errors were encountered: