Skip to content

printing can be ugly #353

Open
Open
@dajmcdon

Description

@dajmcdon

This example the recipe in the vignette

r <- epi_recipe(jhu) %>%

library(recipes)
library(epipredict)

jhu <- case_death_rate_subset %>%
  dplyr::filter(
    time_value >= "2021-06-04",
    time_value <= "2021-12-31",
    geo_value %in% c("ca", "fl", "tx", "ny", "nj")
  ) %>%
  mutate(geo_value_factor = as.factor(geo_value))

r <- recipe(jhu) %>%
  add_role(time_value, new_role = "predictor") %>%
  step_dummy(geo_value_factor, role = "predictor") %>%
  step_growth_rate(case_rate, role = "none", prefix = "gr_") %>%
  step_epi_lag(starts_with("gr_"), lag = c(0, 7, 14)) %>%
  step_epi_ahead(starts_with("gr_"), ahead = 7, role = "none") %>%
  # note recipes::step_cut() has a bug in it, or we could use that here
  step_mutate(
    response = cut(
      ahead_7_gr_7_rel_change_case_rate,
      breaks = c(-Inf, -0.2, 0.25, Inf) / 7, # division gives weekly not daily
      labels = c("down", "flat", "up")
    ),
    role = "outcome"
  ) %>%
  step_rm(has_role("none"), has_role(NA)) %>%
  step_epi_naomit()

r
#> 
#> ── Epi Recipe ──────────────────────────────────────────────────────────────────
#> 
#> ── Inputs
#> Number of variables by role
#> predictor:       1
#> geo_value:       1
#> time_value:      1
#> undeclared role: 3
#> 
#> ── Operations
#> $terms
#> <list_of<quosure>>
#> 
#> [[1]]
#> <quosure>
#> expr: ^geo_value_factor
#> env:  0x12d1a6128
#> 
#> 
#> $role
#> [1] "predictor"
#> 
#> $trained
#> [1] FALSE
#> 
#> $one_hot
#> [1] FALSE
#> 
#> $preserve
#> [1] FALSE
#> 
#> $naming
#> function (var, lvl, ordinal = FALSE, sep = "_") 
#> {
#>     args <- vctrs::vec_recycle_common(var, lvl)
#>     var <- args[[1]]
#>     lvl <- args[[2]]
#>     if (!ordinal) {
#>         nms <- paste(var, make.names(lvl), sep = sep)
#>     }
#>     else {
#>         nms <- paste0(var, names0(length(lvl), sep))
#>     }
#>     nms
#> }
#> <bytecode: 0x12d048b48>
#> <environment: namespace:recipes>
#> 
#> $levels
#> NULL
#> 
#> $keep_original_cols
#> [1] FALSE
#> 
#> $skip
#> [1] FALSE
#> 
#> $id
#> [1] "dummy_rgGr9"
#> 
#> attr(,"class")
#> [1] "step_dummy" "step"      
#> $role
#> [1] "outcome"
#> 
#> $trained
#> [1] FALSE
#> 
#> $inputs
#> <list_of<quosure>>
#> 
#> $response
#> <quosure>
#> expr: ^cut(ahead_7_gr_7_rel_change_case_rate, breaks = c(-Inf, -0.2, 0.25,
#>           Inf) / 7, labels = c("down", "flat", "up"))
#> env:  0x12d1a63c8
#> 
#> 
#> $skip
#> [1] FALSE
#> 
#> $id
#> [1] "mutate_MVXkG"
#> 
#> attr(,"class")
#> [1] "step_mutate" "step"       
#> $terms
#> <list_of<quosure>>
#> 
#> [[1]]
#> <quosure>
#> expr: ^has_role("none")
#> env:  0x12d1a6470
#> 
#> [[2]]
#> <quosure>
#> expr: ^has_role(NA)
#> env:  0x12d1a6470
#> 
#> 
#> $role
#> [1] NA
#> 
#> $trained
#> [1] FALSE
#> 
#> $removals
#> NULL
#> 
#> $skip
#> [1] FALSE
#> 
#> $id
#> [1] "rm_mV3xQ"
#> 
#> attr(,"class")
#> [1] "step_rm" "step"
#> 1. Calculating growth_rate for: case_rate by rel_change
#> 2. Lagging: starts_with("gr_") by 0, 7, 14
#> 3. Leading: starts_with("gr_") by 7
#> 4. • Removing rows with NA values in: all_predictors()
#> 5. • Removing rows with NA values in: all_outcomes()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions