Skip to content

feat: support huggingface/text-embeddings-inference for faster embedding inference #39

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Sep 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions examples/embedding/huggingface_tei_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# -*- coding: utf-8 -*-
import sys
sys.path.append(".")
from modelcache.embedding.huggingface_tei import HuggingfaceTEI

'''
run tei server:
text-embeddings-router --model-id BAAI/bge-large-zh-v1.5 --port 8080
'''

def run():
tei_instance = HuggingfaceTEI('http://127.0.0.1:8080/v1/embeddings', 'BAAI/bge-large-zh-v1.5')
print('dimenson', tei_instance.dimension)
print('embedding', tei_instance.to_embeddings('hello'))

if __name__ == '__main__':
run()
4 changes: 4 additions & 0 deletions modelcache/embedding/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
fasttext = LazyImport("fasttext", globals(), "modelcache.embedding.fasttext")
paddlenlp = LazyImport("paddlenlp", globals(), "modelcache.embedding.paddlenlp")
timm = LazyImport("timm", globals(), "modelcache.embedding.timm")
huggingface_tei = LazyImport("huggingface_tei", globals(), "modelcache.embedding.huggingface_tei")


def Huggingface(model="sentence-transformers/all-mpnet-base-v2"):
Expand All @@ -30,3 +31,6 @@ def PaddleNLP(model="ernie-3.0-medium-zh"):

def Timm(model="resnet50", device="default"):
return timm.Timm(model, device)

def HuggingfaceTEI(base_url, model):
return huggingface_tei.HuggingfaceTEI(base_url, model)
32 changes: 32 additions & 0 deletions modelcache/embedding/huggingface_tei.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# -*- coding: utf-8 -*-
import requests
import numpy as np
from modelcache.embedding.base import BaseEmbedding

class HuggingfaceTEI(BaseEmbedding):
def __init__(self, base_url: str, model: str):
self.base_url = base_url
self.model = model
self.headers = {
'accept': 'application/json',
'Content-Type': 'application/json',
}
self.__dimension = self.to_embeddings('test').shape[0]

def to_embeddings(self, data, **_):
json_data = {
'input': data,
'model': self.model,
}

response = requests.post(self.base_url, headers=self.headers, json=json_data)
embedding = response.json()['data'][0]['embedding']
return np.array(embedding)

@property
def dimension(self):
"""Embedding dimension.

:return: embedding dimension
"""
return self.__dimension