Skip to content

Commit

Permalink
Update documentation and bump version
Browse files Browse the repository at this point in the history
  • Loading branch information
RalfG committed Oct 29, 2019
1 parent 8adc777 commit 0ccc204
Show file tree
Hide file tree
Showing 3 changed files with 40 additions and 110 deletions.
73 changes: 38 additions & 35 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
- [Introduction](#introduction)
- [Installation](#installation)
- [Usage](#usage)
- [Multiple prediction models](#multiple-prediction-models)
- [Specialized prediction models](#specialized-prediction-models)

---

Expand Down Expand Up @@ -34,14 +34,14 @@ If you use MS²PIP for your research, please cite the following articles:
- Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server
delivers fast and accurate MS² peak intensity prediction for multiple
fragmentation methods, instruments and labeling techniques. *Nucleic Acids
Research* https://doi.org/10.1093/nar/gkz299
Research* [doi:10.1093/nar/gkz299](https://doi.org/10.1093/nar/gkz299)
- Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server:
compute and visualize MS² peak intensity predictions for CID and HCD
fragmentation. *Nucleic Acids Research*, 43(W1), W326–W330.
https://doi.org/10.1093/nar/gkv542
[doi:10.1093/nar/gkv542](https://doi.org/10.1093/nar/gkv542)
- Degroeve, S., & Martens, L. (2013). MS²PIP: a tool for MS/MS peak intensity
prediction. *Bioinformatics (Oxford, England)*, 29(24), 3199–203.
https://doi.org/10.1093/bioinformatics/btt544
[doi:10.1093/bioinformatics/btt544](https://doi.org/10.1093/bioinformatics/btt544)

Please also take note of and mention the MS²PIP-version you used.

Expand All @@ -63,7 +63,7 @@ pip install --editable .
---

## Usage
MS²PIP comes with [pre-trained models](#multiple-prediction-models) for a
MS²PIP comes with [pre-trained models](#specialized-prediction-models) for a
variety of fragmentation methods and modifications. These models can easily be
applied by configuring MS²PIP in the [config file](#config-file) and providing a
list of peptides in the form of a [PEPREC file](#peprec-file). Optionally,
Expand Down Expand Up @@ -93,12 +93,12 @@ optional arguments:
#### Config file
Several MS²PIP options need to be set in this config file.
- `model=X` where X is one of the currently supported MS²PIP models (see
[Multiple prediction models](#multiple-prediction-models)).
[Specialized prediction models](#specialized-prediction-models)).
- `frag_error=X` where is X is the fragmentation spectrum mass tolerance in Da
(only relevant if an MGF file is passed).
- `out=X` where X is a comma-separated list of a selection of the currently
supported output file formats: `csv`, `mgf`, `msp`, or `bibliospec` (SSL/MS2,
also for Skyline). For example: `out=csv,msp`.
supported output file formats: `csv`, `mgf`, `msp`, `spectronaut`, or
`bibliospec` (SSL/MS2, also for Skyline). For example: `out=csv,msp`.
- `ptm=X,Y,opt,Z` for every peptide modification where:
- `X` is a string that represents the
PTM name (needs to match the names in the [PEPREC file](#peprec-file)).
Expand Down Expand Up @@ -152,7 +152,7 @@ ptm=Carbamidomethyl,57.02146,opt,C
ptm=Acetyl,42.010565,opt,N-term
ptm=Glyloss,-58.005479,opt,C-term
```
then the PEPREC file could look like this:
then the **PEPREC file** could look like this:
```
spec_id modifications peptide charge
peptide1 - ACDEK 2
Expand All @@ -176,15 +176,16 @@ END IONS
```

### Output
The predictions are saved in a `.csv` file with the name
`<peptide_file>_predictions.csv`.
If you want the output to be in the form of an `.mgf` file, replace the
variable `mgf` in line 716 of `ms2pipC.py`.
The predictions are saved in the output file(s) specified in the
[config file](#config-file). Note that the normalization of intensities depends
on the output file format. In the CSV file output, intensities are
log2-transformed. To "unlog" the intensities, use the following formula:
`intensity = (2 ** log2_intensity) - 0.001`.

---

## Multiple prediction models
MS²PIP contains multiple specific prediction models, fit for peptide spectra
## Specialized prediction models
MS²PIP contains multiple specialized prediction models, fit for peptide spectra
with different properties. These properties include fragmentation method,
instrument, labeling techniques and modifications. As all of these properties
can influence fragmentation patterns, it is important to match the MS²PIP model
Expand All @@ -196,27 +197,29 @@ models also include predictions for doubly charged fragment ions (b++ and y++),
next to the predictions for singly charged b- and y-ions.

### MS² acquisition information and peptide properties of the models' training datasets
Model | Fragmentation method | MS² mass analyzer | Peptide properties
-|-|-|-
HCD | HCD | Orbitrap | Tryptic digest
CID | CID | Linear ion trap | Tryptic digest
iTRAQ | HCD | Orbitrap | Tryptic digest, iTRAQ-labeled
iTRAQphospho | HCD | Orbitrap | Tryptic digest, iTRAQ-labeled, enriched for phosphorylation
TMT | HCD | Orbitrap | Tryptic digest, TMT-labeled
TTOF5600 | CID | Quadrupole Time-of-Flight | Tryptic digest
HCDch2 | HCD | Orbitrap | Tryptic digest
CIDch2 | CID | Linear ion trap | Tryptic digest

| Model | Fragmentation method | MS² mass analyzer | Peptide properties |
| - | - | - | - |
| HCD | HCD | Orbitrap | Tryptic digest |
| CID | CID | Linear ion trap | Tryptic digest |
| iTRAQ | HCD | Orbitrap | Tryptic digest, iTRAQ-labeled |
| iTRAQphospho | HCD | Orbitrap | Tryptic digest, iTRAQ-labeled, enriched for phosphorylation |
| TMT | HCD | Orbitrap | Tryptic digest, TMT-labeled |
| TTOF5600 | CID | Quadrupole Time-of-Flight | Tryptic digest |
| HCDch2 | HCD | Orbitrap | Tryptic digest |
| CIDch2 | CID | Linear ion trap | Tryptic digest |

### Models, version numbers, and the train and test datasets used to create each model
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset
-|-|-|-|-
HCD | v20190107 | [MassIVE-KB](https://doi.org/10.1016/j.cels.2018.08.004) (1 623 712) | [PXD008034](https://doi.org/10.1016/j.jprot.2017.12.006) (35 269) | 0.903786
CID | v20190107 | [NIST CID Human](https://chemdata.nist.gov/) (340 356) | [NIST CID Yeast](https://chemdata.nist.gov/) (92 609) | 0.904947
iTRAQ | v20190107 | [NIST iTRAQ](https://chemdata.nist.gov/) (704 041) | [PXD001189](https://doi.org/10.1182/blood-2016-05-714048) (41 502) | 0.905870
iTRAQphospho | v20190107 | [NIST iTRAQ phospho](https://chemdata.nist.gov/) (183 383) | [PXD001189](https://doi.org/10.1182/blood-2016-05-714048) (9 088) | 0.843898
TMT | v20190107 | [Peng Lab TMT Spectral Library](https://doi.org/10.1021/acs.jproteome.8b00594) (1 185 547) | [PXD009495](https://doi.org/10.15252/msb.20188242) (36 137) | 0.950460
TTOF5600 | v20190107 | [PXD000954](https://doi.org/10.1038/sdata.2014.31) (215 713) | [PXD001587](https://doi.org/10.1038/nmeth.3255) (15 111) | 0.746823
HCDch2 | v20190107 | [MassIVE-KB](https://doi.org/10.1016/j.cels.2018.08.004) (1 623 712) | [PXD008034](https://doi.org/10.1016/j.jprot.2017.12.006) (35 269) | 0.903786 (+) and 0.644162 (++)
CIDch2 | v20190107 | [NIST CID Human](https://chemdata.nist.gov/) (340 356) | [NIST CID Yeast](https://chemdata.nist.gov/) (92 609) | 0.904947 (+) and 0.813342 (++)

| Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
| - | - | - | - | - |
| HCD | v20190107 | [MassIVE-KB](https://doi.org/10.1016/j.cels.2018.08.004) (1 623 712) | [PXD008034](https://doi.org/10.1016/j.jprot.2017.12.006) (35 269) | 0.903786 |
| CID | v20190107 | [NIST CID Human](https://chemdata.nist.gov/) (340 356) | [NIST CID Yeast](https://chemdata.nist.gov/) (92 609) | 0.904947 |
| iTRAQ | v20190107 | [NIST iTRAQ](https://chemdata.nist.gov/) (704 041) | [PXD001189](https://doi.org/10.1182/blood-2016-05-714048) (41 502) | 0.905870 |
| iTRAQphospho | v20190107 | [NIST iTRAQ phospho](https://chemdata.nist.gov/) (183 383) | [PXD001189](https://doi.org/10.1182/blood-2016-05-714048) (9 088) | 0.843898 |
| TMT | v20190107 | [Peng Lab TMT Spectral Library](https://doi.org/10.1021/acs.jproteome.8b00594) (1 185 547) | [PXD009495](https://doi.org/10.15252/msb.20188242) (36 137) | 0.950460 |
| TTOF5600 | v20190107 | [PXD000954](https://doi.org/10.1038/sdata.2014.31) (215 713) | [PXD001587](https://doi.org/10.1038/nmeth.3255) (15 111) | 0.746823 |
| HCDch2 | v20190107 | [MassIVE-KB](https://doi.org/10.1016/j.cels.2018.08.004) (1 623 712) | [PXD008034](https://doi.org/10.1016/j.jprot.2017.12.006) (35 269) | 0.903786 (+) and 0.644162 (++) |
| CIDch2 | v20190107 | [NIST CID Human](https://chemdata.nist.gov/) (340 356) | [NIST CID Yeast](https://chemdata.nist.gov/) (92 609) | 0.904947 (+) and 0.813342 (++) |

To train custom MS²PIP models, please refer to [Training new MS²PIP models](http://compomics.github.io/projects/ms2pip_c/wiki/Training-new-MS2PIP-models.html) on our Wiki pages.
73 changes: 0 additions & 73 deletions fasta2speclib_config.md

This file was deleted.

4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,12 @@

setup(
name='ms2pip',
version='20190805',
version='v20191029',
description='MS²PIP: MS² Peak Intensity Prediction',
author='Sven Degroeve, Ralf Gabriels, Ana Sílvia C. Silva',
author_email='sven.degroeve@vib-ugent.be',
url='https://www.github.com/compomics/ms2pip_c',
packages=['ms2pip', 'ms2pip.ms2pip_tools'],
packages=['ms2pip', 'ms2pip.ms2pip_tools', 'fasta2speclib'],
include_package_data=False,
entry_points={
'console_scripts': [
Expand Down

0 comments on commit 0ccc204

Please sign in to comment.