-
学习内容来源于:caicloud / tensorflow-tutorial
-
电子书:《Tensorflow实战Google深度学习框架》
对样例中python2.x代码以及注释进行补充和修正,修正为python3.x代码。代码使用jupyter/jupyter进行交互演示,运行以下命令演示:
git clone https://github.com/cookeem/TensorFlow_learning_notes
cd TensorFlow_learning_notes
jupyter notebook
- 第3章 TensorFlow入门
- 第4章 深层神经网络
- 第5章 MNIST数字识别问题
- 第6章 图像识别与卷积神经网络
- 第7章 图像数据处理
- 第8章 循环神经网络
- 第9章 TensorBoard可视化
- 第10章 TensorFlow计算加速
以下定义了三个隐藏层的全连接方式的神经网络 样例代码:
import tensorflow as tf
l1 = tf.matmul(x, w1)
l2 = tf.matmul(l1, w2)
y = tf.matmul(l2,w3)
激活函数有多种,例如常用的: tf.nn.relu tf.nn.tanh tf.nn.sigmoid tf.nn.elu 样例代码:
import tensorflow as tf
a = tf.nn.relu(tf.matmul(x, w1) + biase1)
y = tf.nn.relu(tf.matmul(a, w2) + biase2)
经典损失函数,交叉熵(cross entropy) 用于计算预测结果矩阵Y和实际结果矩阵Y_之间的距离 样例代码:
import tensorflow as tf
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
import tensorflow as tf
v = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
tf.reduce_mean(tf.clip_by_value(v, 0.0, 10.0))
对于分类问题,通常把交叉熵与softmax回归一起使用
import tensorflow as tf
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(y, y_)
对于回归问题,通常使用mse(均方误差函数)计算损失函数
import tensorflow as tf
mse_loss = tf.reduce_mean(tf.square(y_ - y))
# 与以下函数计算结果完全一致
dataset_size = 1000
mse_loss = tf.reduce_sum(tf.pow(y_ - y, 2)) / dataset_size
自定义条件化的损失函数
import tensorflow as tf
loss_less = 10
loss_more = 1
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
一般优化器的目标是优化权重W和偏差biases,最小化损失函数的结果 以下优化器会不断优化W和biases
import tensorflow as tf
LEARNING_RATE = 0.001
mse_loss = tf.reduce_mean(tf.square(y_ - y))
train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(mse_loss)
学习率设置过大可能导致无法收敛,学习率设置过小可能导致收敛过慢
import tensorflow as tf
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
learning_rate=0.1,
global_step=global_step,
decay_steps=100,
decay_rate=0.96,
staircase=True,
name=None
)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step)
避免训练出来的模型过分复杂,即模型记住了所有数据(包括噪声引起的误差) 因此需要引入正则化函数叠加的方式,避免模型出现过拟合
import tensorflow as tf
v_lambda = 0.001
w = tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w)
mse_loss = tf.reduce_mean(tf.square(y_ - y) + tf.contrib.layers.l2_regularizer(v_lambda)(w))
用于控制模型的变化速度,可以控制权重W以及偏差biases 例如:avg_class.average(w) avg_class.average(biases)
import tensorflow as tf
v1 = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(0, trainable=False)
ema = tf.train.ExponentialMovingAverage(decay=0.99, num_updates=step)
# 每一次操作的时候,列表变量[v1]都会被更新
maintain_averages_op = ema.apply([v1])
with tf.Session() as sess:
# 初始化
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run([v1, ema.average(v1)]))
# 更新step和v1的取值
sess.run(tf.assign(step, 10000))
sess.run(tf.assign(v1, 10))
sess.run(maintain_averages_op)
print(sess.run([v1, ema.average(v1)]))