Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

documentation fixes for spectral constraints #169

Merged
merged 1 commit into from
Jan 5, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions agnpy/constraints/spectral_constraints.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,23 +34,23 @@ def gamma_max_larmor(self):

.. math::

R_L < R_b \Rightarrow \gamma_{\mathrm{max}} < \frac{R_b e B}{m_e c^2}
R_L \u2264 R_b \Rightarrow \gamma_{\mathrm{max}} \u2264 \frac{R_b e B}{m_e c^2}
"""
return (self.blob.R_b * e * self.blob.B_cgs / mec2).to_value("")

@property
def gamma_max_ballistic(self):
r"""Naive estimation of maximum Lorentz factor of electrons comparing
acceleration time scale with ballistic time scale.
For the latter we assume that the particles crosses the blob radius.
For the latter we assume that the particles cross the blob radius.

.. math::

(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\
T_{\mathrm{acc}} &= E \,/\,(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} = R_L / (\xi c) \\
T_{\mathrm{bal}} &= R_b / c \\
T_{\mathrm{acc}} &< T_{\mathrm{bal}}
\Rightarrow \gamma_{\mathrm{max}} < \frac{\xi R_b e B}{m_e c^2}
T_{\mathrm{acc}} \u2264 T_{\mathrm{bal}}
\Rightarrow \gamma_{\mathrm{max}} \u2264 \frac{\xi R_b e B}{m_e c^2}
"""
return self.blob.xi * self.gamma_max_larmor

Expand All @@ -63,7 +63,7 @@ def gamma_max_synch(self):
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}} &= 4 / 3 \sigma_T c U_B \gamma^2 \\
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= (\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}}
\Rightarrow \gamma_{\mathrm{max}} < \sqrt{\frac{6 \pi \xi e}{\sigma_T B}}
\Rightarrow \gamma_{\mathrm{max}} = \sqrt{\frac{6 \pi \xi e}{\sigma_T B}}
"""
return np.sqrt(
6 * np.pi * self.blob.xi * e / (sigma_T * self.blob.B_cgs)
Expand All @@ -77,9 +77,9 @@ def gamma_max_SSC(self):

.. math::
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} &= 4 / 3 \sigma_T c U_{\mathrm{synch}} \gamma^2 \\
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} &= 4 / 3 \sigma_T c U_{\mathrm{SSC}} \gamma^2 \\
(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= (\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}}
\Rightarrow \gamma_{\mathrm{max}} < \sqrt{\frac{3 \xi e B }{\sigma_T U_SSC}}
\Rightarrow \gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{4 \sigma_T U_\mathrm{SSC}}}
"""
return np.sqrt(
3
Expand All @@ -95,7 +95,7 @@ def gamma_max_EC_DT(self, dt, r=0 * u.cm):
WARNING: assumes Thomson regime

.. math::
\gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{ \sigma_T U'_\mathrm{ext}}}
\gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{4 \sigma_T U'_\mathrm{ext}}}
"""
return np.sqrt(
3 * self.blob.xi * e * self.blob.B_cgs / (4 * sigma_T * dt.u(r, self.blob))
Expand Down
Loading